Abstract
Integrin αv β3 receptors are expressed on activated endothelial cells during neovascularization to maintain tumor growth. Many radiolabeled probes utilize the tight and specific association between the arginine-glycine-aspartatic acid (RGD) peptide and integrin αv β3 , but one main obstacle for any clinical application of these probes is the laborious multistep radiosynthesis of (18)F. In this study, the dimeric RGD peptide, E-[c(RGDfK)]2, was conjugated with NODAGA and radiolabeled with (18)F in a simple one-pot process with a radiolabeling yield of 20%, the whole process lasting only 45 min. NODAGA-E-[c(RGDfK)]2 labeled with (18)F at a specific activity of 1.8 MBq nmol(-1) and a radiochemical purity of 100% could be achieved. The logP value of (18)F-labeled NODAGA-E-[c(RGDfK)]2 was -4.26 ± 0.02. In biodistribution studies, (18)F-NODAGA-E-[c(RGDfK)]2 cleared rapidly from the blood with 0.03 ± 0.01 percentage injected dose per gram (%ID g(-1)) in the blood at 2 h p.i., mainly via the kidneys, and showed good in vivo stability. Tumor uptake of (18)F-NODAGA-E-[c(RGDfK)]2 (3.44 ± 0.20 %ID g(-1), 2 h p.i.) was significantly lower than that of reference compounds (68) Ga-labeled NODAGA-E-[c(RGDfK)]2 (6.26 ± 0.76 %ID g(-1) ; p <0.001) and (111) In-labeled NODAGA-E-[c(RGDfK)]2 (4.99 ± 0.64 %ID g(-1) ; p < 0.01). Co-injection of an excess of unlabeled NODAGA-E-[c(RGDfK)]2 along with (18)F-NODAGA-E-[c(RGDfK)]2 resulted in significantly reduced radioactivity concentrations in the tumor (0.85 ± 0.13 %ID g(-1)). The αv β3 integrin-expressing SK-RC-52 tumor could be successfully visualized by microPET with (18)F-labeled NODAGA-E-[c(RGDfK)]2 . In conclusion, NODAGA-E-[c(RGDfK)]2 could be labeled rapidly with (18)F using a direct aqueous, one-pot method and it accumulated specifically in αv β3 integrin-expressing SK-RC-52 tumors, allowing for visualization by microPET.
Original language | English |
---|---|
Pages (from-to) | 238-45 |
Number of pages | 8 |
Journal | Contrast Media & Molecular Imaging |
Volume | 8 |
Issue number | 3 |
DOIs | |
Publication status | Published - 23 Apr 2013 |
Keywords
- Animals
- Dimerization
- Female
- Fluorine Radioisotopes
- Gene Expression Regulation, Neoplastic
- Integrin alphaVbeta3
- Isotope Labeling
- Metabolic Clearance Rate
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Molecular Imaging
- Neoplasms, Experimental
- Oligopeptides
- Organ Specificity
- Reproducibility of Results
- Sensitivity and Specificity
- Tissue Distribution
- Tomography, Emission-Computed, Single-Photon