TY - JOUR
T1 - Immunometabolic analysis shows a distinct cyto-metabotype in Covid-19 compared to sepsis from other causes
AU - Trovato, Francesca M.
AU - Mujib, Salma
AU - Jerome, Ellen
AU - Cavazza, Anna
AU - Morgan, Phillip
AU - Smith, John
AU - Depante, Maria Theresa
AU - O'Reilly, Kevin
AU - Luxton, James
AU - Mare, Tracey
AU - Napoli, Salvatore
AU - McPhail, Mark JW
N1 - Funding Information:
MM is grateful to the NIHR Biomedical Research Council at Guys and St Thomas Hospital for salary and infrastructure support.
Publisher Copyright:
© 2022 The Author(s)
PY - 2022/6
Y1 - 2022/6
N2 - Background: In Covid-19, profound systemic inflammatory responses are accompanied by both metabolic risk factors for severity and, separately, metabolic mechanisms have been shown to underly disease progression. It is unknown whether this reflects similar situations in sepsis or is a unique characteristic of Covid-19. Aims: Define the immunometabolic signature of Covid-19. Methods: 65 patients with Covid-19,19 patients with sepsis and 14 healthy controls were recruited and sampled for plasma, serum and peripheral blood mononuclear cells (PBMCs) through 10 days of critical illness. Metabotyping was performed using the Biocrates p180 kit and multiplex cytokine profiling undertaken. PBMCs underwent phenotyping by flow cytometry. Immune and metabolic readouts were integrated and underwent pathway analysis. Results: Phopsphatidylcholines (PC) are reduced in Covid-19 but greater than in sepsis. Compared to controls, tryptophan is reduced in Covid-19 and inversely correlated with the severity of the disease and IFN-ɣ concentrations, conversely the kyneurine and kyneurine/tryptophan ratio increased in the most severe cases. These metabolic changes were consistent through 2 pandemic waves in our centre. PD-L1 expression in CD8+ T cells, Tregs and CD14+ monocytes was increased in Covid-19 compared to controls. Conclusions: In our cohort, Covid-19 is associated with monocytopenia, increased CD14+ and Treg PD-L1 expression correlating with IFN-ɣ plasma concentration and disease severity (SOFA score). The latter is also associated with metabolic derangements of Tryptophan, LPC 16:0 and PCs. Lipid metabolism, in particular phosphatidylcholines and lysophosphatidylcolines, seems strictly linked to immune response in Covid-19. Our results support the hypothesis that IFN-ɣ -PD-L1 axis might be involved in the cytokine release syndrome typical of severe Covid-19 and the phenomenon persisted through multiple pandemic waves despite use of immunomodulation.
AB - Background: In Covid-19, profound systemic inflammatory responses are accompanied by both metabolic risk factors for severity and, separately, metabolic mechanisms have been shown to underly disease progression. It is unknown whether this reflects similar situations in sepsis or is a unique characteristic of Covid-19. Aims: Define the immunometabolic signature of Covid-19. Methods: 65 patients with Covid-19,19 patients with sepsis and 14 healthy controls were recruited and sampled for plasma, serum and peripheral blood mononuclear cells (PBMCs) through 10 days of critical illness. Metabotyping was performed using the Biocrates p180 kit and multiplex cytokine profiling undertaken. PBMCs underwent phenotyping by flow cytometry. Immune and metabolic readouts were integrated and underwent pathway analysis. Results: Phopsphatidylcholines (PC) are reduced in Covid-19 but greater than in sepsis. Compared to controls, tryptophan is reduced in Covid-19 and inversely correlated with the severity of the disease and IFN-ɣ concentrations, conversely the kyneurine and kyneurine/tryptophan ratio increased in the most severe cases. These metabolic changes were consistent through 2 pandemic waves in our centre. PD-L1 expression in CD8+ T cells, Tregs and CD14+ monocytes was increased in Covid-19 compared to controls. Conclusions: In our cohort, Covid-19 is associated with monocytopenia, increased CD14+ and Treg PD-L1 expression correlating with IFN-ɣ plasma concentration and disease severity (SOFA score). The latter is also associated with metabolic derangements of Tryptophan, LPC 16:0 and PCs. Lipid metabolism, in particular phosphatidylcholines and lysophosphatidylcolines, seems strictly linked to immune response in Covid-19. Our results support the hypothesis that IFN-ɣ -PD-L1 axis might be involved in the cytokine release syndrome typical of severe Covid-19 and the phenomenon persisted through multiple pandemic waves despite use of immunomodulation.
KW - Covid-19
KW - Immune checkpoint
KW - Immunometabolism
KW - Phosphatidylcholine
KW - Tryptophan
UR - http://www.scopus.com/inward/record.url?scp=85132883839&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2022.e09733
DO - 10.1016/j.heliyon.2022.e09733
M3 - Article
AN - SCOPUS:85132883839
SN - 2405-8440
VL - 8
JO - Heliyon
JF - Heliyon
IS - 6
M1 - e09733
ER -