Implications of a stochastic microscopic Finsler cosmology

Nick E. Mavromatos, Vasiliki A. Mitsou, Sarben Sarkar, Ariadne Vergou

Research output: Contribution to journalArticlepeer-review

67 Citations (Scopus)

Abstract

Within the context of supersymmetric space-time (D-particle) foam in string/brane-theory, we discuss a Finsler-induced cosmology and its implications for (thermal) dark matter abundances. This constitutes a truly microscopic model of dynamical space-time, where Finsler geometries arise naturally. The D-particle foam model involves point-like brane defects (D-particles), which provide the topologically non-trivial foamy structures of space-time. The D-particles can capture and emit stringy matter and this leads to a recoil of D-particles. It is indicated how one effect of such a recoil of D-particles is a back-reaction on the space-time metric of Finsler type which is stochastic. We show that such a type of stochastic space-time foam can lead to acceptable cosmologies at late epochs of the Universe, due to the non-trivial properties of the supersymmetric (BPS like) D-particle defects, which are such so as not to affect significantly the Hubble expansion. The restrictions placed on the free parameters of the Finsler type metric are obtained from solving the Boltzmann equation in this background for relic abundances of a Lightest Supersymmetric Particle (LSP) dark matter candidate. It is demonstrated that the D-foam acts as a source for particle production in the Boltzmann equation, thereby leading to enhanced thermal LSP relic abundances relative to those in the Standard Lambda CDM cosmology. For D-particle masses of order TeV, such effects may be relevant for dark matter searches at colliders. The latter constraints complement those coming from high-energy gamma-ray astronomy on the induced vacuum refractive index that D-foam models entail. We also comment briefly on the production mechanisms of such TeV-mass stringy defects at colliders, which, in view of the current LHC experimental searches, will impose further constraints on their couplings.
Original languageEnglish
Article number1956
Pages (from-to)1-38
Number of pages38
JournalEuropean Physical Journal C
Volume72
Issue number3
DOIs
Publication statusPublished - Mar 2012

Fingerprint

Dive into the research topics of 'Implications of a stochastic microscopic Finsler cosmology'. Together they form a unique fingerprint.

Cite this