TY - JOUR
T1 - In Vitro and in Vivo Characterization of Molecular Interactions between Calmodulin, Ezrin/Radixin/Moesin, and L-selectin
AU - Killock, David J.
AU - Parsons, Maddy
AU - Zarrouk, Marouan
AU - Ameer-Beg, Simon M.
AU - Ridley, Anne J.
AU - Haskard, Dorian O.
AU - Zvelebil, Marketa
AU - Ivetic, Aleksandar
PY - 2009/3/27
Y1 - 2009/3/27
N2 - L-selectin is a cell adhesion molecule that tethers leukocytes to the luminal walls of venules during inflammation and enables them to roll under the force of blood flow. Clustering of L-selectin during rolling is thought to promote outside-in signals that lead to integrin activation and chemokine receptor expression, ultimately contributing to leukocyte arrest. Several studies have underscored the importance of the L-selectin cytoplasmic tail in functionally regulating adhesion and signaling. Interestingly, the L-selectin tail comprises only 17 amino acids, and yet it is thought to bind simultaneously to several proteins. For example, constitutive association of calmodulin (CaM) and ezrin/radixin/moesin (ERM) to L-selectin confers resistance to proteolysis and microvillar positioning, respectively. In this report we found that recombinant purified CaM and ERM bound noncompetitively to the same tail of L-selectin. Furthermore, molecular modeling supported the possibility that CaM, L-selectin, and moesin could form a heterotrimeric complex. Finally, using fluorescence lifetime imaging microscopy to measure fluorescence resonance energy transfer, it was shown that CaM, L-selectin, and ERM could interact simultaneously in vivo. Moreover, L-selectin clustering promoted CaM/ERM interaction in cis (i.e. derived from neighboring L-selectin tails). These results highlight a novel intracellular event that occurs as a consequence of L-selectin clustering, which could participate in transducing signals that promote the transition from rolling to arrest.
AB - L-selectin is a cell adhesion molecule that tethers leukocytes to the luminal walls of venules during inflammation and enables them to roll under the force of blood flow. Clustering of L-selectin during rolling is thought to promote outside-in signals that lead to integrin activation and chemokine receptor expression, ultimately contributing to leukocyte arrest. Several studies have underscored the importance of the L-selectin cytoplasmic tail in functionally regulating adhesion and signaling. Interestingly, the L-selectin tail comprises only 17 amino acids, and yet it is thought to bind simultaneously to several proteins. For example, constitutive association of calmodulin (CaM) and ezrin/radixin/moesin (ERM) to L-selectin confers resistance to proteolysis and microvillar positioning, respectively. In this report we found that recombinant purified CaM and ERM bound noncompetitively to the same tail of L-selectin. Furthermore, molecular modeling supported the possibility that CaM, L-selectin, and moesin could form a heterotrimeric complex. Finally, using fluorescence lifetime imaging microscopy to measure fluorescence resonance energy transfer, it was shown that CaM, L-selectin, and ERM could interact simultaneously in vivo. Moreover, L-selectin clustering promoted CaM/ERM interaction in cis (i.e. derived from neighboring L-selectin tails). These results highlight a novel intracellular event that occurs as a consequence of L-selectin clustering, which could participate in transducing signals that promote the transition from rolling to arrest.
U2 - 10.1074/jbc.M806983200
DO - 10.1074/jbc.M806983200
M3 - Article
SN - 1083-351X
VL - 284
SP - 8833
EP - 8845
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 13
ER -