TY - JOUR
T1 - In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles
AU - Christensen-Jeffries, Kirsten
AU - Browning, Richard
AU - Tang, Meng-Xing
AU - Dunsby, Christopher
AU - Eckersley, Robert J.
PY - 2015/2/28
Y1 - 2015/2/28
N2 - The structure of microvasculature cannot be resolved using standard clinical ultrasound (US) imaging frequencies due to the fundamental diffraction limit of US waves. In this work, we use a standard clinical US system to perform in vivo sub-diffraction imaging on a CD1, female mouse aged 8 weeks by localizing isolated US signals from bubbles flowing within the ear microvasculature, and compare our results to optical microscopy. Furthermore, we develop a new technique to map blood velocity at super-resolution by tracking individual bubbles through the vasculature. Resolution is improved from a measured lateral and axial resolution of 112 μm and 94 μm respectively in original US data, to super-resolved images of microvasculature where vessel features as fine as 19 μm are clearly visualized. Velocity maps clearly distinguish opposing flow direction and separated speed distributions in adjacent vessels, thereby enabling further differentiation between vessels otherwise not spatially separated in the image. This technique overcomes the diffraction limit to provide a non-invasive means of imaging the microvasculature at super-resolution, to depths of many centimeters. In the future, this method could noninvasively image pathological or therapeutic changes in the microvasculature at centimeter depths in vivo.
AB - The structure of microvasculature cannot be resolved using standard clinical ultrasound (US) imaging frequencies due to the fundamental diffraction limit of US waves. In this work, we use a standard clinical US system to perform in vivo sub-diffraction imaging on a CD1, female mouse aged 8 weeks by localizing isolated US signals from bubbles flowing within the ear microvasculature, and compare our results to optical microscopy. Furthermore, we develop a new technique to map blood velocity at super-resolution by tracking individual bubbles through the vasculature. Resolution is improved from a measured lateral and axial resolution of 112 μm and 94 μm respectively in original US data, to super-resolved images of microvasculature where vessel features as fine as 19 μm are clearly visualized. Velocity maps clearly distinguish opposing flow direction and separated speed distributions in adjacent vessels, thereby enabling further differentiation between vessels otherwise not spatially separated in the image. This technique overcomes the diffraction limit to provide a non-invasive means of imaging the microvasculature at super-resolution, to depths of many centimeters. In the future, this method could noninvasively image pathological or therapeutic changes in the microvasculature at centimeter depths in vivo.
U2 - 10.1109/TMI.2014.2359650
DO - 10.1109/TMI.2014.2359650
M3 - Article
C2 - 25265604
SN - 0278-0062
VL - 34
SP - 433
EP - 440
JO - Ieee Transactions on Medical Imaging
JF - Ieee Transactions on Medical Imaging
IS - 2
ER -