King's College London

Research portal

Individual Neuronal Subtypes Exhibit Diversity in CNS Myelination Mediated by Synaptic Vesicle Release

Research output: Contribution to journalArticle

Sigrid Koudelka, Matthew G. Voas, Rafael G. Almeida, Marion Baraban, Jan Soetaert, Martin P. Meyer, William S. Talbot, David A. Lyons

Original languageEnglish
Pages (from-to)1447-1455
JournalCurrent Biology
Volume26
Issue number11
Early online date5 May 2016
DOIs
Publication statusPublished - 6 Jun 2016

Documents

King's Authors

Abstract

Summary Regulation of myelination by oligodendrocytes in the CNS has important consequences for higher-order nervous system function (e.g., [1–4]), and there is growing consensus that neuronal activity regulates CNS myelination (e.g., [5–9]) through local axon-oligodendrocyte synaptic-vesicle-release-mediated signaling [10–12]. Recent analyses have indicated that myelination along axons of distinct neuronal subtypes can differ [13, 14], but it is not known whether regulation of myelination by activity is common to all neuronal subtypes or only some. This limits insight into how specific neurons regulate their own conduction. Here, we use a novel fluorescent fusion protein reporter to study myelination along the axons of distinct neuronal subtypes over time in zebrafish. We find that the axons of reticulospinal and commissural primary ascending (CoPA) neurons are among the first myelinated in the zebrafish CNS. To investigate how activity regulates myelination by different neuronal subtypes, we express tetanus toxin (TeNT) in individual reticulospinal or CoPA neurons to prevent synaptic vesicle release. We find that the axons of individual tetanus toxin expressing reticulospinal neurons have fewer myelin sheaths than controls and that their myelin sheaths are 50% shorter than controls. In stark contrast, myelination along tetanus-toxin-expressing CoPA neuron axons is entirely normal. These results indicate that while some neuronal subtypes modulate myelination by synaptic vesicle release to a striking degree in vivo, others do not. These data have implications for our understanding of how different neurons regulate myelination and thus their own function within specific neuronal circuits.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454