Inhibition of neuronal nitric oxide synthase-mediated activation of poly(ADP-ribose) polymerase in traumatic brain injury: Neuroprotection by 3-aminobenzamide

T Hortobagyi, C Gorlach, Z Benyo, Z Lacza, S Hortobagyi, M Wahl, T Harkany

    Research output: Contribution to journalArticlepeer-review

    29 Citations (Scopus)

    Abstract

    Focal traumatic injury to the cerebral cortex is associated with early activation of the neuronal isoform of nitric oxide synthase (nNOS), where high concentrations of nitric oxide-derived free radicals elicit extensive DNA damage. Subsequent activation of the nuclear repair enzyme poly(ADP-ribose) polymerase (PARP) causes a severe energy deficit leading to the ultimate demise of affected neurons. Little is known about the temporal relationship of nNOS and PARP activation and the neuroprotective efficacy of their selective blockade in traumatic brain injury. To determine the relationship of nNOS and PARP activation, brain injury was induced by cryogenic lesion to the somatosensory cortex applying a pre-cooled cylinder after trephination for 6 s to the intact dura mater. Pre-treatment with 3-bromo-7-nitroindazole (BrNI; 25 mg/kg, i.p.), and pre- or combined pre- and post-treatment with 3-aminobenzamide (AB; 10 mg/kg (i.c.v.) or 10 mg/kg/h (i.p.)) were used to inhibit nNOS and PARP, respectively. Cold lesion-induced changes in the somatosensory cortex and neuroprotection by BrNI and AB were determined using immunocytochemistry and immunodot-blot for detection of poly(ADP-ribose; PAR), the end-product of PARP activation, and the triphenyltetrazolium-chloride assay to assess lesion volume. PAR immunoreactivity reached its peak 30 min post-lesion and was followed by gradual reduction of PAR immunolabeling. BrNI pre-treatment significantly decreased the lesion-induced PAR concentration in damaged cerebral cortex. Pre-treatment by i.c.v. infusion of AB mark-edly diminished cortical PAR immunoreactivity and significantly reduced the lesion volume 24 h post-injury. In contrast, i.p. AB treatment remained largely ineffective. In conclusion, our data indicate early activation of PARP after cold lesion that is, at least in part, related to nNOS induction and supports the relevance of nNOS and/or PARP inhibition to therapeutic approaches of traumatic brain injury. (C) 2003 IBRO. Published by Elsevier Ltd. All rights reserved.
    Original languageEnglish
    Pages (from-to)983 - 990
    Number of pages8
    JournalNeuroscience
    Volume121
    Issue number4
    DOIs
    Publication statusPublished - 7 Nov 2003

    Fingerprint

    Dive into the research topics of 'Inhibition of neuronal nitric oxide synthase-mediated activation of poly(ADP-ribose) polymerase in traumatic brain injury: Neuroprotection by 3-aminobenzamide'. Together they form a unique fingerprint.

    Cite this