TY - JOUR
T1 - Interaction of fascin and protein kinase C alpha: a novel intersection in cell adhesion and motility
AU - Anilkumar, N
AU - Parsons, M
AU - Monk, R
AU - Ng, T
AU - Adams, J C
PY - 2003/10/15
Y1 - 2003/10/15
N2 - Coordination of protrusive and contractile cell-matrix contacts is important for cell adhesion and migration, but the mechanisms involved are not well understood. We report an unexpected direct association between fascin, an actin-bundling component of filopodia, microspikes and lamellipodial ribs, and protein kinase Calpha (PKCalpha), a regulator of focal adhesions. The association is detectable by protein-protein binding in vitro, by coimmunoprecipitation from cell extracts, and in live cells as fluorescence resonance energy transfer detected by fluorescence imaging lifetime microscopy. The interaction is physiologically regulated by the extracellular matrix context of cells, depends on activation of PKCalpha and is mediated by the C1B domain of PKCalpha. Strikingly, a fascin mutant, fascin S39D, associates constitutively with PKCalpha. Through use of a newly developed set of membrane-permeable peptides that separately inhibit either fascin/PKCalpha or fascin/actin binding, we have uncovered that specific blockade of the fascin/PKCalpha interaction increases cell migration on fibronectin in conjunction with increased fascin protrusions and remodeling of focal adhesions. These results identify the fascin-PKCalpha interaction as an important novel intersection in the regulation and networking of cell-matrix contacts.
AB - Coordination of protrusive and contractile cell-matrix contacts is important for cell adhesion and migration, but the mechanisms involved are not well understood. We report an unexpected direct association between fascin, an actin-bundling component of filopodia, microspikes and lamellipodial ribs, and protein kinase Calpha (PKCalpha), a regulator of focal adhesions. The association is detectable by protein-protein binding in vitro, by coimmunoprecipitation from cell extracts, and in live cells as fluorescence resonance energy transfer detected by fluorescence imaging lifetime microscopy. The interaction is physiologically regulated by the extracellular matrix context of cells, depends on activation of PKCalpha and is mediated by the C1B domain of PKCalpha. Strikingly, a fascin mutant, fascin S39D, associates constitutively with PKCalpha. Through use of a newly developed set of membrane-permeable peptides that separately inhibit either fascin/PKCalpha or fascin/actin binding, we have uncovered that specific blockade of the fascin/PKCalpha interaction increases cell migration on fibronectin in conjunction with increased fascin protrusions and remodeling of focal adhesions. These results identify the fascin-PKCalpha interaction as an important novel intersection in the regulation and networking of cell-matrix contacts.
UR - http://www.scopus.com/inward/record.url?scp=0142073731&partnerID=8YFLogxK
U2 - 10.1093/emboj/cdg521
DO - 10.1093/emboj/cdg521
M3 - Article
VL - 22
SP - 5390
EP - 5402
JO - EMBO Journal
JF - EMBO Journal
IS - 20
ER -