TY - CHAP
T1 - Interactive Segmentation via Deep Learning and B-Spline Explicit Active Surfaces
AU - Williams, Helena
AU - Pedrosa, João
AU - Cattani, Laura
AU - Housmans, Susanne
AU - Vercauteren, Tom
AU - Deprest, Jan
AU - D’hooge, Jan
N1 - Funding Information:
We gratefully acknowledge General Electric Healthcare (Zif, Austria), for their continued research support.
Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021
Y1 - 2021
N2 - Automatic medical image segmentation via convolutional neural networks (CNNs) has shown promising results. However, they may not always be robust enough for clinical use. Sub-optimal segmentation would require clinician’s to manually delineate the target object, causing frustration. To address this problem, a novel interactive CNN-based segmentation framework is proposed in this work. The aim is to represent the CNN segmentation contour as B-splines by utilising B-spline explicit active surfaces (BEAS). The interactive element of the framework allows the user to precisely edit the contour in real-time, and by utilising BEAS it ensures the final contour is smooth and anatomically plausible. This framework was applied to the task of 2D segmentation of the levator hiatus from 2D ultrasound (US) images, and compared to the current clinical tools used in pelvic floor disorder clinic (4DView, GE Healthcare; Zipf, Austria). Experimental results show that: 1) the proposed framework is more robust than current state-of-the-art CNNs; 2) the perceived workload calculated via the NASA-TLX index was reduced more than half for the proposed approach in comparison to current clinical tools; and 3) the proposed tool requires at least 13 s less user time than the clinical tools, which was significant (p = 0.001).
AB - Automatic medical image segmentation via convolutional neural networks (CNNs) has shown promising results. However, they may not always be robust enough for clinical use. Sub-optimal segmentation would require clinician’s to manually delineate the target object, causing frustration. To address this problem, a novel interactive CNN-based segmentation framework is proposed in this work. The aim is to represent the CNN segmentation contour as B-splines by utilising B-spline explicit active surfaces (BEAS). The interactive element of the framework allows the user to precisely edit the contour in real-time, and by utilising BEAS it ensures the final contour is smooth and anatomically plausible. This framework was applied to the task of 2D segmentation of the levator hiatus from 2D ultrasound (US) images, and compared to the current clinical tools used in pelvic floor disorder clinic (4DView, GE Healthcare; Zipf, Austria). Experimental results show that: 1) the proposed framework is more robust than current state-of-the-art CNNs; 2) the perceived workload calculated via the NASA-TLX index was reduced more than half for the proposed approach in comparison to current clinical tools; and 3) the proposed tool requires at least 13 s less user time than the clinical tools, which was significant (p = 0.001).
UR - http://www.scopus.com/inward/record.url?scp=85116406363&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-87193-2_30
DO - 10.1007/978-3-030-87193-2_30
M3 - Conference paper
AN - SCOPUS:85116406363
SN - 9783030871925
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 315
EP - 325
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
A2 - de Bruijne, Marleen
A2 - de Bruijne, Marleen
A2 - Cattin, Philippe C.
A2 - Cotin, Stéphane
A2 - Padoy, Nicolas
A2 - Speidel, Stefanie
A2 - Zheng, Yefeng
A2 - Essert, Caroline
PB - Springer Science and Business Media Deutschland GmbH
T2 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
Y2 - 27 September 2021 through 1 October 2021
ER -