IoT-Based Remote Control Study of a Robotic Trans-Esophageal Ultrasound Probe via LAN and 5G

Shuangyi Wang*, Xilong Hou, James Housden, Zengguang Hou, Davinder Singh, Kawal Rhode

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

2 Citations (Scopus)
85 Downloads (Pure)

Abstract

A robotic trans-esophageal echocardiography (TEE) probe has been recently developed to address the problems with manual control in the X-ray environment when a conventional probe is used for interventional procedure guidance. However, the robot was exclusively to be used in local areas and the effectiveness of remote control has not been scientifically tested. In this study, we implemented an Internet-of-things (IoT)-based configuration to the TEE robot so the system can set up a local area network (LAN) or be configured to connect to an internet cloud over 5G. To investigate the remote control, backlash hysteresis effects were measured and analysed. A joystick-based device and a button-based gamepad were then employed and compared with the manual control in a target reaching experiment for the two steering axes. The results indicated different hysteresis curves for the left-right and up-down steering axes with the input wheel’s deadbands found to be 15° and 8°, respectively. Similar magnitudes of positioning errors at approximately 0.5° and maximum overshoots at around 2.5° were found when manually and robotically controlling the TEE probe. The amount of time to finish the task indicated a better performance using the button-based gamepad over joystick-based device, although both were worse than the manual control. It is concluded that the IoT-based remote control of the TEE probe is feasible and a trained user can accurately manipulate the probe. The main identified problem was the backlash hysteresis in the steering axes, which can result in continuous oscillations and overshoots.

Original languageEnglish
Title of host publicationMedical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis - 1st International Workshop, ASMUS 2020, and 5th International Workshop, PIPPI 2020, Held in Conjunction with MICCAI 2020, Proceedings
EditorsYipeng Hu, Roxane Licandro, J. Alison Noble, Jana Hutter, Andrew Melbourne, Stephen Aylward, Esra Abaci Turk, Jordina Torrents Barrena, Jordina Torrents Barrena
PublisherSpringer Science and Business Media Deutschland GmbH
Pages171-179
Number of pages9
ISBN (Print)9783030603335
DOIs
Publication statusPublished - 2020
Event1st International Workshop on Advances in Simplifying Medical UltraSound, ASMUS 2020, and the 5th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, PIPPI 2020, held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: 4 Oct 20208 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12437 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference1st International Workshop on Advances in Simplifying Medical UltraSound, ASMUS 2020, and the 5th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, PIPPI 2020, held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Country/TerritoryPeru
CityLima
Period4/10/20208/10/2020

Fingerprint

Dive into the research topics of 'IoT-Based Remote Control Study of a Robotic Trans-Esophageal Ultrasound Probe via LAN and 5G'. Together they form a unique fingerprint.

Cite this