TY - CHAP
T1 - Is it time for a 999-like (or 112/911) system for critical information services
AU - Obiodu, Emeka
AU - Sastry, Nishanth
AU - Raman, Aravindh
PY - 2020/4
Y1 - 2020/4
N2 - The nature of information gathering and dissemination has changed dramatically over the past 20 years as traditional media sources are increasingly being replaced by a cacaphony of social media channels. Despite this, society still expects to disseminate its critical information via traditional news sources. Public Warning Systems (PWS) exist, but concerns about spamming users with irrelevant warnings mean that mostly only life threatening emergency warnings are delivered via PWS. We argue that it is time for society to upgrade its infrastructure for critical information services (CIS) and that a smartphone app system can provide a standardised, less-intrusive user interface to deliver CIS, especially if the traffic for the app is prioritised during congestion periods. Accordingly, we make three contributions in this paper. Firstly, using network parameters from our longitudinal measurements of network performance in Central London (an area of high user traffic), we show, with simulations, that reserving some bandwidth exclusively for CIS could assure QoS for CIS without significant degradation for other services. Secondly, we provide a conceptual design of a 999 CIS app, which can mimic the current 999 voice system and can be built using 3GPP defined systems. Thirdly, we identify the stakeholder relationships with industry partners and policymakers that can help to deliver a CIS system that is fit for purpose for an increasingly smartphone-based society.
AB - The nature of information gathering and dissemination has changed dramatically over the past 20 years as traditional media sources are increasingly being replaced by a cacaphony of social media channels. Despite this, society still expects to disseminate its critical information via traditional news sources. Public Warning Systems (PWS) exist, but concerns about spamming users with irrelevant warnings mean that mostly only life threatening emergency warnings are delivered via PWS. We argue that it is time for society to upgrade its infrastructure for critical information services (CIS) and that a smartphone app system can provide a standardised, less-intrusive user interface to deliver CIS, especially if the traffic for the app is prioritised during congestion periods. Accordingly, we make three contributions in this paper. Firstly, using network parameters from our longitudinal measurements of network performance in Central London (an area of high user traffic), we show, with simulations, that reserving some bandwidth exclusively for CIS could assure QoS for CIS without significant degradation for other services. Secondly, we provide a conceptual design of a 999 CIS app, which can mimic the current 999 voice system and can be built using 3GPP defined systems. Thirdly, we identify the stakeholder relationships with industry partners and policymakers that can help to deliver a CIS system that is fit for purpose for an increasingly smartphone-based society.
KW - 112,911,999,emergency
KW - CLASP
KW - critical
KW - net neutrality
KW - priority lanes
KW - traffic prioritization
UR - http://www.scopus.com/inward/record.url?scp=85086770383&partnerID=8YFLogxK
U2 - 10.1109/NOMS47738.2020.9110263
DO - 10.1109/NOMS47738.2020.9110263
M3 - Conference paper
AN - SCOPUS:85086770383
T3 - Proceedings of IEEE/IFIP Network Operations and Management Symposium 2020: Management in the Age of Softwarization and Artificial Intelligence, NOMS 2020
BT - Proceedings of IEEE/IFIP Network Operations and Management Symposium 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE/IFIP Network Operations and Management Symposium, NOMS 2020
Y2 - 20 April 2020 through 24 April 2020
ER -