King's College London

Research portal

Is it time for a 999-like (or 112/911) system for critical information services

Research output: Chapter in Book/Report/Conference proceedingConference paper

Original languageEnglish
Title of host publicationProceedings of IEEE/IFIP Network Operations and Management Symposium 2020
Subtitle of host publicationManagement in the Age of Softwarization and Artificial Intelligence, NOMS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728149738
DOIs
PublishedApr 2020
Event2020 IEEE/IFIP Network Operations and Management Symposium, NOMS 2020 - Budapest, Hungary
Duration: 20 Apr 202024 Apr 2020

Publication series

NameProceedings of IEEE/IFIP Network Operations and Management Symposium 2020: Management in the Age of Softwarization and Artificial Intelligence, NOMS 2020

Conference

Conference2020 IEEE/IFIP Network Operations and Management Symposium, NOMS 2020
CountryHungary
CityBudapest
Period20/04/202024/04/2020

King's Authors

Abstract

The nature of information gathering and dissemination has changed dramatically over the past 20 years as traditional media sources are increasingly being replaced by a cacaphony of social media channels. Despite this, society still expects to disseminate its critical information via traditional news sources. Public Warning Systems (PWS) exist, but concerns about spamming users with irrelevant warnings mean that mostly only life threatening emergency warnings are delivered via PWS. We argue that it is time for society to upgrade its infrastructure for critical information services (CIS) and that a smartphone app system can provide a standardised, less-intrusive user interface to deliver CIS, especially if the traffic for the app is prioritised during congestion periods. Accordingly, we make three contributions in this paper. Firstly, using network parameters from our longitudinal measurements of network performance in Central London (an area of high user traffic), we show, with simulations, that reserving some bandwidth exclusively for CIS could assure QoS for CIS without significant degradation for other services. Secondly, we provide a conceptual design of a 999 CIS app, which can mimic the current 999 voice system and can be built using 3GPP defined systems. Thirdly, we identify the stakeholder relationships with industry partners and policymakers that can help to deliver a CIS system that is fit for purpose for an increasingly smartphone-based society.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454