King's College London

Research portal

Is there a causal link between intracellular na elevation and metabolic remodelling in cardiac hypertrophy?

Research output: Contribution to journalReview article

Original languageEnglish
Pages (from-to)817-827
Number of pages11
JournalBiochemical Society Transactions
Volume46
Issue number4
DOIs
Publication statusPublished - 3 Jul 2018

Documents

King's Authors

Abstract

Alterations in excitation–contraction coupling and elevated intracellular sodium (Nai) are hallmarks of pathological cardiac remodelling that underline contractile dysfunction. In addition, changes in cardiac metabolism are observed in cardiac hypertrophy and heart failure (HF) that lead to a mismatch in ATP supply and demand, contributing to poor prognosis. A link between Nai and altered metabolism has been proposed but is not well understood. Many mitochondrial enzymes are stimulated by mitochondrial calcium (Camito) during contraction, thereby sustaining production of reducing equivalents to maintain ATP supply. This stimulation is thought to be perturbed when cytosolic Nai is high due to increased Camito efflux, potentially compromising ATPmito production and leading to metabolic dysregulation. Increased Nai has been previously shown to affect Camito; however, whether Nai elevation plays a causative role in energetic mismatching in the hypertrophied and failing heart remains unknown. In this review, we discuss the relationship between elevated Nai, NaK ATPase dysregulation and the metabolic phenotype in the contexts of pathological hypertrophy and HF and their link to metabolic flexibility, capacity (reserve) and efficiency that are governed by intracellular ion homeostasis. The development of non-invasive analytical techniques using nuclear magnetic resonance able to probe metabolism in situ in the functioning heart will enable a better understanding of the underlying mechanisms of Nai overload in cardiac pathophysiology. They will lead to novel insights that help to explain the metabolic contribution towards these diseases, the incomplete rescue observed with current therapies and a rationale for future energy-targeted therapies.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454