TY - JOUR
T1 - Iterative framework for the joint segmentation and CT synthesis of MR images
T2 - Application to MRI-only radiotherapy treatment planning
AU - Burgos, Ninon
AU - Guerreiro, Filipa
AU - McClelland, Jamie
AU - Presles, Benoit
AU - Modat, Marc
AU - Nill, Simeon
AU - Dearnaley, David
AU - DeSouza, Nandita
AU - Oelfke, Uwe
AU - Knopf, Antje Christin
AU - Ourselin, Sebastien
AU - Jorge Cardoso, M.
PY - 2017/5/5
Y1 - 2017/5/5
N2 - To tackle the problem of magnetic resonance imaging (MRI)-only radiotherapy treatment planning (RTP), we propose a multi-atlas information propagation scheme that jointly segments organs and generates pseudo x-ray computed tomography (CT) data from structural MR images (T1-weighted and T2-weighted). As the performance of the method strongly depends on the quality of the atlas database composed of multiple sets of aligned MR, CT and segmented images, we also propose a robust way of registering atlas MR and CT images, which combines structure-guided registration, and CT and MR image synthesis. We first evaluated the proposed framework in terms of segmentation and CT synthesis accuracy on 15 subjects with prostate cancer. The segmentations obtained with the proposed method were compared using the Dice score coefficient (DSC) to the manual segmentations. Mean DSCs of 0.73, 0.90, 0.77 and 0.90 were obtained for the prostate, bladder, rectum and femur heads, respectively. The mean absolute error (MAE) and the mean error (ME) were computed between the reference CTs (non-rigidly aligned to the MRs) and the pseudo CTs generated with the proposed method. The MAE was on average 45.7±4.6 HU and the ME -1.6±7.7 HU. We then performed a dosimetric evaluation by re-calculating plans on the pseudo CTs and comparing them to the plans optimised on the reference CTs. We compared the cumulative dose volume histograms (DVH) obtained for the pseudo CTs to the DVH obtained for the reference CTs in the planning target volume (PTV) located in the prostate, and in the organs at risk at different DVH points. We obtained average differences of -0.14% in the PTV for D98%, and between -0.14% and 0.05% in the PTV, bladder, rectum and femur heads for Dmean and D2%. Overall, we demonstrate that the proposed framework is able to automatically generate accurate pseudo CT images and segmentations in the pelvic region, potentially bypassing the need for CT scan for accurate RTP.
AB - To tackle the problem of magnetic resonance imaging (MRI)-only radiotherapy treatment planning (RTP), we propose a multi-atlas information propagation scheme that jointly segments organs and generates pseudo x-ray computed tomography (CT) data from structural MR images (T1-weighted and T2-weighted). As the performance of the method strongly depends on the quality of the atlas database composed of multiple sets of aligned MR, CT and segmented images, we also propose a robust way of registering atlas MR and CT images, which combines structure-guided registration, and CT and MR image synthesis. We first evaluated the proposed framework in terms of segmentation and CT synthesis accuracy on 15 subjects with prostate cancer. The segmentations obtained with the proposed method were compared using the Dice score coefficient (DSC) to the manual segmentations. Mean DSCs of 0.73, 0.90, 0.77 and 0.90 were obtained for the prostate, bladder, rectum and femur heads, respectively. The mean absolute error (MAE) and the mean error (ME) were computed between the reference CTs (non-rigidly aligned to the MRs) and the pseudo CTs generated with the proposed method. The MAE was on average 45.7±4.6 HU and the ME -1.6±7.7 HU. We then performed a dosimetric evaluation by re-calculating plans on the pseudo CTs and comparing them to the plans optimised on the reference CTs. We compared the cumulative dose volume histograms (DVH) obtained for the pseudo CTs to the DVH obtained for the reference CTs in the planning target volume (PTV) located in the prostate, and in the organs at risk at different DVH points. We obtained average differences of -0.14% in the PTV for D98%, and between -0.14% and 0.05% in the PTV, bladder, rectum and femur heads for Dmean and D2%. Overall, we demonstrate that the proposed framework is able to automatically generate accurate pseudo CT images and segmentations in the pelvic region, potentially bypassing the need for CT scan for accurate RTP.
KW - atlas-based methods
KW - image synthesis
KW - MRI-only RTP
KW - pseudo CT
KW - segmentation
UR - http://www.scopus.com/inward/record.url?scp=85020026530&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/aa66bf
DO - 10.1088/1361-6560/aa66bf
M3 - Article
C2 - 28291745
AN - SCOPUS:85020026530
SN - 0031-9155
VL - 62
SP - 4237
EP - 4253
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 11
ER -