King's College London

Research portal

Kato's local epsilon conjecture: l ≠ p case

Research output: Contribution to journalArticle

Standard

Kato's local epsilon conjecture : l ≠ p case. / Kakde, Mahesh.

In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, Vol. 90, No. 1, 08.2014, p. 287-308.

Research output: Contribution to journalArticle

Harvard

Kakde, M 2014, 'Kato's local epsilon conjecture: l ≠ p case', JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, vol. 90, no. 1, pp. 287-308. https://doi.org/10.1112/jlms/jdu022

APA

Kakde, M. (2014). Kato's local epsilon conjecture: l ≠ p case. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 90(1), 287-308. https://doi.org/10.1112/jlms/jdu022

Vancouver

Kakde M. Kato's local epsilon conjecture: l ≠ p case. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES. 2014 Aug;90(1):287-308. https://doi.org/10.1112/jlms/jdu022

Author

Kakde, Mahesh. / Kato's local epsilon conjecture : l ≠ p case. In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES. 2014 ; Vol. 90, No. 1. pp. 287-308.

Bibtex Download

@article{97cdd75612294db0a707431fec1a08c1,
title = "Kato's local epsilon conjecture: l ≠ p case",
abstract = "Let l and p be two distinct primes. Let K be a local field of characteristic 0 and residue characteristic l. In this paper, we prove existence of local epsilon(0)-constants for representations of Gal (K over bar /K) over Iwasawa algebras of p-adic Lie groups. Existence of these epsilon(0)-constants was conjectured by Kato (for commutative Iwasawa algebras) and Fukaya-Kato (in general).",
keywords = "MAIN CONJECTURE, IWASAWA THEORY, GROUP-RINGS, CONSTANTS, FIELDS",
author = "Mahesh Kakde",
year = "2014",
month = aug,
doi = "10.1112/jlms/jdu022",
language = "English",
volume = "90",
pages = "287--308",
journal = "JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES",
issn = "0024-6107",
publisher = "Oxford University Press",
number = "1",

}

RIS (suitable for import to EndNote) Download

TY - JOUR

T1 - Kato's local epsilon conjecture

T2 - l ≠ p case

AU - Kakde, Mahesh

PY - 2014/8

Y1 - 2014/8

N2 - Let l and p be two distinct primes. Let K be a local field of characteristic 0 and residue characteristic l. In this paper, we prove existence of local epsilon(0)-constants for representations of Gal (K over bar /K) over Iwasawa algebras of p-adic Lie groups. Existence of these epsilon(0)-constants was conjectured by Kato (for commutative Iwasawa algebras) and Fukaya-Kato (in general).

AB - Let l and p be two distinct primes. Let K be a local field of characteristic 0 and residue characteristic l. In this paper, we prove existence of local epsilon(0)-constants for representations of Gal (K over bar /K) over Iwasawa algebras of p-adic Lie groups. Existence of these epsilon(0)-constants was conjectured by Kato (for commutative Iwasawa algebras) and Fukaya-Kato (in general).

KW - MAIN CONJECTURE

KW - IWASAWA THEORY

KW - GROUP-RINGS

KW - CONSTANTS

KW - FIELDS

U2 - 10.1112/jlms/jdu022

DO - 10.1112/jlms/jdu022

M3 - Article

VL - 90

SP - 287

EP - 308

JO - JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES

JF - JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES

SN - 0024-6107

IS - 1

ER -

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454