Abstract
Background: Artificial intelligence (AI) has the potential to facilitate the automation of CMR analysis for biomarker extraction. However, most AI algorithms are trained on a specific input domain (e.g., scanner vendor or hospital-tailored imaging protocol) and lack the robustness to perform optimally when applied to CMR data from other input domains.
Purpose: To develop and validate a robust CMR analysis tool for automatic segmentation and cardiac function analysis which achieves state-of-the-art performance for multi-vendor short-axis cine CMR images.
Methods: The current work is an extension of our previously published quality-controlled AI-based tool for cine CMR analysis [1]. We deployed an AI algorithm that is equipped to handle different image sizes and domains automatically - the ‘nnU-Net’ framework [2] - and retrained our tool using the UK Biobank (UKBB) cohort population (n = 4,872) and a large database of clinical CMR studies obtained from two NHS hospitals (n = 3,406). The NHS hospital data came from three different scanner types: Siemens Aera 1.5T (n = 1,419), Philips Achieva
1.5T and 3T (n = 1,160), and Philips Ingenia 1.5T (n = 827). The ‘nnU-net’ was used to segment both ventricles and the myocardium. The proposed method was evaluated on randomly selected test sets from UKBB (n = 488) and NHS (n = 331) and on two external publicly available databases of clinical CMRs acquired on Philips, Siemens, General Electric (GE), and Canon CMR scanners – ACDC (n = 100) [3] and M&Ms (n = 321) [4]. We calculated the Dice scores - which measure the overlap between manual and automatic segmentations - and compared manual vs AI-based measures of biventricular volumes and function.
Results: Table 1 shows that the Dice scores for the NHS, ACDC, and M&Ms scans are similar to those obtained in the highly controlled, single vendor and single field strength UKBB scans. Although our AI-based tool was only trained on CMR scans from two vendors (Philips and Siemens), it performs similarly in unseen vendors (GE and Canon). Furthermore, it achieves state-of-the-art performance in online segmentation challenges, without being specifically trained on these databases. Table 1 also shows good agreement between manual and automated
clinical measures of ejection fraction and ventricular volume and mass. Conclusions: We show that our proposed AI-based tool, which combines training on a large-scale multi-domain CMR database with a state-of-the-art AI algorithm, allows us to robustly deal with routine clinical data from multiple centres, vendors, and field strengths. This is a fundamental step for the clinical translation of AI algorithms. Moreover, our method yields a range of additional metrics of cardiac function (filling and ejection rates, regional wall motion, and strain) at no extra computational cost.
Purpose: To develop and validate a robust CMR analysis tool for automatic segmentation and cardiac function analysis which achieves state-of-the-art performance for multi-vendor short-axis cine CMR images.
Methods: The current work is an extension of our previously published quality-controlled AI-based tool for cine CMR analysis [1]. We deployed an AI algorithm that is equipped to handle different image sizes and domains automatically - the ‘nnU-Net’ framework [2] - and retrained our tool using the UK Biobank (UKBB) cohort population (n = 4,872) and a large database of clinical CMR studies obtained from two NHS hospitals (n = 3,406). The NHS hospital data came from three different scanner types: Siemens Aera 1.5T (n = 1,419), Philips Achieva
1.5T and 3T (n = 1,160), and Philips Ingenia 1.5T (n = 827). The ‘nnU-net’ was used to segment both ventricles and the myocardium. The proposed method was evaluated on randomly selected test sets from UKBB (n = 488) and NHS (n = 331) and on two external publicly available databases of clinical CMRs acquired on Philips, Siemens, General Electric (GE), and Canon CMR scanners – ACDC (n = 100) [3] and M&Ms (n = 321) [4]. We calculated the Dice scores - which measure the overlap between manual and automatic segmentations - and compared manual vs AI-based measures of biventricular volumes and function.
Results: Table 1 shows that the Dice scores for the NHS, ACDC, and M&Ms scans are similar to those obtained in the highly controlled, single vendor and single field strength UKBB scans. Although our AI-based tool was only trained on CMR scans from two vendors (Philips and Siemens), it performs similarly in unseen vendors (GE and Canon). Furthermore, it achieves state-of-the-art performance in online segmentation challenges, without being specifically trained on these databases. Table 1 also shows good agreement between manual and automated
clinical measures of ejection fraction and ventricular volume and mass. Conclusions: We show that our proposed AI-based tool, which combines training on a large-scale multi-domain CMR database with a state-of-the-art AI algorithm, allows us to robustly deal with routine clinical data from multiple centres, vendors, and field strengths. This is a fundamental step for the clinical translation of AI algorithms. Moreover, our method yields a range of additional metrics of cardiac function (filling and ejection rates, regional wall motion, and strain) at no extra computational cost.
Original language | English |
---|---|
Journal | European Heart Journal-Cardiovascular Imaging |
Volume | 22 |
DOIs | |
Publication status | Published - 13 Jul 2021 |