@inproceedings{b859ae8fc50a43008afbda9f22aaf561,
title = "Learning task-specific and shared representations in medical imaging",
abstract = "The performance of multi-task learning hinges on the design of feature sharing between tasks; a process which is combinatorial in the network depth and task count. Hand-crafting an architecture based on human intuitions of task relationships is therefore suboptimal. In this paper, we present a probabilistic approach to learning task-specific and shared representations in Convolutional Neural Networks (CNNs) for multi-task learning of semantic tasks. We introduce Stochastic Filter Groups; which is a mechanism that groups convolutional kernels into task-specific and shared groups to learn an optimal kernel allocation. They facilitate learning optimal shared and task specific representations. We employ variational inference to learn the posterior distribution over the possible grouping of kernels and CNN weights. Experiments on MRI-based prostate radiotherapy organ segmentation and CT synthesis demonstrate that the proposed method learns optimal task allocations that are inline with human-optimised networks whilst improving performance over competing baselines.",
author = "Bragman, {Felix J.S.} and Ryutaro Tanno and Sebastien Ourselin and Alexander, {Daniel C.} and Cardoso, {M. Jorge}",
year = "2019",
doi = "10.1007/978-3-030-32251-9_41",
language = "English",
isbn = "9783030322502",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "SPRINGER",
pages = "374--383",
editor = "Dinggang Shen and Pew-Thian Yap and Tianming Liu and Peters, {Terry M.} and Ali Khan and Staib, {Lawrence H.} and Caroline Essert and Sean Zhou",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings",
note = "22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 ; Conference date: 13-10-2019 Through 17-10-2019",
}