TY - JOUR
T1 - Lectins in Cervical Screening
AU - Lim, Anita WW
AU - Neves, André A.
AU - Bird-Lieberman, Elizabeth
AU - Brindle, Kevin
AU - Lao-sirieix, Pierre
AU - Singh, Naveena
AU - Hollingworth, Antony
AU - Lam Shang Leen , Sarah
AU - Sheaff, M
AU - Sasieni, Peter
PY - 2020/7
Y1 - 2020/7
N2 - Cervical screening in low-resource settings remains an unmet need. Lectins are naturally occurring sugar-binding glycoproteins whose binding patterns change as cancer develops. Lectins discriminate between dysplasia and normal tissue in several precancerous conditions. We explored whether lectins could be developed for cervical screening via visual inspection. Discovery work comprised lectin histochemistry using a panel of candidate lectins on fixed-human cervix tissue (high-grade cervical intraepithelial neoplasia (CIN3, n = 20) or normal (n = 20)), followed by validation in a separate cohort (30 normal, 25 CIN1, 25 CIN3). Lectin binding was assessed visually according to staining intensity. To validate findings macroscopically, near-infra red fluorescence imaging was conducted on freshly-resected cervix (1 normal, 7 CIN3), incubated with topically applied fluorescently-labelled lectin. Fluorescence signal was compared for biopsies and whole specimens according to regions of interest, identified by the overlay of histopathology grids. Lectin histochemistry identified two lectins-wheat germ agglutinin (WGA) and Helix pomatia agglutinin (HPA)-with significantly decreased binding to CIN3 versus normal in both discovery and validation cohorts. Findings at the macroscopic level confirmed weaker WGA binding (lower signal intensity) in CIN3 vs. normal for biopsies (p = 0.0308) and within whole specimens (p = 0.0312). Our findings confirm proof-of-principle and indicate that WGA could potentially be developed further as a probe for high-grade cervical disease.
AB - Cervical screening in low-resource settings remains an unmet need. Lectins are naturally occurring sugar-binding glycoproteins whose binding patterns change as cancer develops. Lectins discriminate between dysplasia and normal tissue in several precancerous conditions. We explored whether lectins could be developed for cervical screening via visual inspection. Discovery work comprised lectin histochemistry using a panel of candidate lectins on fixed-human cervix tissue (high-grade cervical intraepithelial neoplasia (CIN3, n = 20) or normal (n = 20)), followed by validation in a separate cohort (30 normal, 25 CIN1, 25 CIN3). Lectin binding was assessed visually according to staining intensity. To validate findings macroscopically, near-infra red fluorescence imaging was conducted on freshly-resected cervix (1 normal, 7 CIN3), incubated with topically applied fluorescently-labelled lectin. Fluorescence signal was compared for biopsies and whole specimens according to regions of interest, identified by the overlay of histopathology grids. Lectin histochemistry identified two lectins-wheat germ agglutinin (WGA) and Helix pomatia agglutinin (HPA)-with significantly decreased binding to CIN3 versus normal in both discovery and validation cohorts. Findings at the macroscopic level confirmed weaker WGA binding (lower signal intensity) in CIN3 vs. normal for biopsies (p = 0.0308) and within whole specimens (p = 0.0312). Our findings confirm proof-of-principle and indicate that WGA could potentially be developed further as a probe for high-grade cervical disease.
KW - Cervical cancer
KW - Glycans
KW - Lectins
KW - Screening
UR - http://www.scopus.com/inward/record.url?scp=85088495430&partnerID=8YFLogxK
U2 - 10.3390/cancers12071928
DO - 10.3390/cancers12071928
M3 - Article
C2 - 32708812
SN - 2072-6694
VL - 12
SP - 1
EP - 15
JO - Cancers
JF - Cancers
IS - 7
M1 - 1928
ER -