King's College London

Research portal

Left ventricular endocardial pacing is less arrhythmogenic than conventional epicardial pacing when pacing in proximity to scar

Research output: Contribution to journalArticlepeer-review

Original languageEnglish
Pages (from-to)1262-1270
Number of pages9
JournalHeart Rhythm
Volume17
Issue number8
Early online date6 Apr 2020
DOIs
Accepted/In press21 Mar 2020
E-pub ahead of print6 Apr 2020
PublishedAug 2020

Documents

King's Authors

Abstract

Background: Epicardial pacing increases risk of ventricular tachycardia (VT) in patients with ischemic cardiomyopathy (ICM) when pacing in proximity to scar. Endocardial pacing may be less arrhythmogenic as it preserves the physiological sequences of activation and repolarization. Objective: The purpose of this study was to determine the relative arrhythmogenic risk of endocardial compared to epicardial pacing, and the role of the transmural gradient of action potential duration (APD) and pacing location relative to scar on arrhythmogenic risk during endocardial pacing. Methods: Computational models of ICM patients (n = 24) were used to simulate left ventricular (LV) epicardial and endocardial pacing 0.2–3.5 cm from a scar. Mechanisms were investigated in idealized models of the ventricular wall and scar. Simulations were run with/without a 20-ms transmural APD gradient in the physiological direction and with the gradient inverted. Dispersion of repolarization was computed as a surrogate of VT risk. Results: Patient-specific models with a physiological APD gradient predict that endocardial pacing decreases VT risk (34%; P <.05) compared to epicardial pacing when pacing in proximity to scar (0.2 cm). Endocardial pacing location does not significantly affect VT risk, but epicardial pacing at 0.2 cm compared to 3.5 cm from scar increases it (P <.05). Inverting the transmural APD gradient reverses this trend. Idealized models predict that propagation in the direction opposite to APD gradient decreases VT risk. Conclusion: Endocardial pacing is less arrhythmogenic than epicardial pacing when pacing proximal to scar and is less susceptible to pacing location relative to scar. The physiological repolarization sequence during endocardial pacing mechanistically explains reduced VT risk compared to epicardial pacing.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454