Living Machines: A study of atypical animacy

Mariona Coll Ardanuy, Federico Nanni, Kaspar Beelen, Kasra Hosseini, Ruth Ahnert, Jon Lawrence, Katherine McDonough, Giorgia Tolfo, Daniel CS Wilson, Barbara McGillivray

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

15 Citations (Scopus)

Abstract

This paper proposes a new approach to animacy detection, the task of determining whether an entity is represented as animate in a text. In particular, this work is focused on atypical animacy and examines the scenario in which typically inanimate objects, specifically machines, are given animate attributes. To address it, we have created the first dataset for atypical animacy detection, based on nineteenth-century sentences in English, with machines represented as either animate or inanimate. Our method builds on recent innovations in language modeling, specifically BERT contextualized word embeddings, to better capture fine-grained contextual properties of words. We present a fully unsupervised pipeline, which can be easily adapted to different contexts, and report its performance on an established animacy dataset and our newly introduced resource. We show that our method provides a substantially more accurate characterization of atypical animacy, especially when applied to highly complex forms of language use.
Original languageEnglish
Title of host publicationProceedings of the 28th International Conference on Computational Linguistics
Place of PublicationBarcelona, Spain (Online)
PublisherInternational Committee on Computational Linguistics
Pages4534-4545
Number of pages12
Publication statusPublished - 1 Dec 2020

Fingerprint

Dive into the research topics of 'Living Machines: A study of atypical animacy'. Together they form a unique fingerprint.

Cite this