TY - JOUR
T1 - Local dimensionality determines imaging speed in localization microscopy
AU - Fox-Roberts, Patrick
AU - Marsh, Richard
AU - Pfisterer, Karin
AU - Jayo, Asier
AU - Parsons, Maddy
AU - Cox, Susan
PY - 2017/1
Y1 - 2017/1
N2 - Localization microscopy allows biological samples to be imaged at a length scale of tens of nanometres. Live-cell super-resolution imaging is rare, as it is generally assumed to be too slow for dynamic samples. The speed of data acquisition can be optimized by tuning the density of activated fluorophores in each time frame. Here, we show that the maximum achievable imaging speed for a particular structure varies by orders of magnitude, depending on the sample dimensionality (that is, whether the sample is more like a point, a strand or an extended structure such as a focal adhesion). If too high an excitation density is used, we demonstrate that the analysis undergoes silent failure, resulting in reconstruction artefacts. We are releasing a tool to allow users to identify areas of the image in which the activation density was too high and correct for them, in both live-and fixed-cell experiments.
AB - Localization microscopy allows biological samples to be imaged at a length scale of tens of nanometres. Live-cell super-resolution imaging is rare, as it is generally assumed to be too slow for dynamic samples. The speed of data acquisition can be optimized by tuning the density of activated fluorophores in each time frame. Here, we show that the maximum achievable imaging speed for a particular structure varies by orders of magnitude, depending on the sample dimensionality (that is, whether the sample is more like a point, a strand or an extended structure such as a focal adhesion). If too high an excitation density is used, we demonstrate that the analysis undergoes silent failure, resulting in reconstruction artefacts. We are releasing a tool to allow users to identify areas of the image in which the activation density was too high and correct for them, in both live-and fixed-cell experiments.
UR - http://www.scopus.com/inward/record.url?scp=85009376402&partnerID=8YFLogxK
U2 - 10.1038/ncomms13558
DO - 10.1038/ncomms13558
M3 - Article
AN - SCOPUS:85009376402
SN - 2041-1723
VL - 8
SP - 1
EP - 10
JO - Nature Communications
JF - Nature Communications
M1 - 13558
ER -