Magnetically Decorated Multiwalled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents

Julie Tzu-wen Wang, Laura Cabana, Maxime Bourgognon, Houmam Kafa, Andrea Protti, Kerrie Venner, Ajay M. Shah, Jane K. Sosabowski, Stephen J. Mather, Anna Roig, Xiaoxing Ke, Gustaaf Van Tendeloo, Rafael T. M. De Rosales, Gerard Tobias, Khuloud T. Al-jamal

Research output: Contribution to journalArticlepeer-review

73 Citations (Scopus)
198 Downloads (Pure)

Abstract

Carbon nanotubes (CNTs) are one of the most promising nanomaterials to be used in biomedicine for drug/gene delivery as well as biomedical imaging. This study develops radio-labeled, iron oxide-decorated multiwalled CNTs (MWNTs) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) contrast agents. Hybrids containing different amounts of iron oxide are synthesized by in situ generation. Physicochemical characterisations reveal the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations, X-ray diffraction, and X-ray photoelectron spectroscopy assure the conformation of prepared SPION as -Fe2O3. High r(2) relaxivities are obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem. The hybrids are successfully radio labeled with technetium-99m through a functionalized bisphosphonate and enable SPECT/CT imaging and -scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality is found by histological examination and the presence of SPION and MWNT are identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues show the co-localization of SPION and MWNTs within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrate the capability of the present SPION-MWNT hybrids as dual MRI and SPECT contrast agents for in vivo use.

Original languageEnglish
Pages (from-to)1880-1894
Number of pages15
JournalAdvanced Functional Materials
Volume24
Issue number13
DOIs
Publication statusPublished - 2 Apr 2014

Keywords

  • carbon nanotubes
  • magnetic nanoparticles
  • MRI
  • SPECT
  • imaging
  • contrast agents
  • IN-VIVO EVALUATION
  • DRUG-DELIVERY
  • NANOPARTICLES
  • IRON
  • COMPLEXES
  • FUNCTIONALIZATION
  • PURIFICATION
  • IMPURITIES
  • EXCRETION
  • REMOVAL

Fingerprint

Dive into the research topics of 'Magnetically Decorated Multiwalled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents'. Together they form a unique fingerprint.

Cite this