Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects

S Rabe-Hesketh, A Skrondal, A Pickles

Research output: Contribution to journalArticlepeer-review

455 Citations (Scopus)

Abstract

Gauss-Hermite quadrature is often used to evaluate and maximize the likelihood for random component probit models. Unfortunately, the estimates are biased for large cluster sizes and/or intraclass correlations. We show that adaptive quadrature largely overcomes these problems. We then extend the adaptive quadrature approach to general random coefficient models with limited and discrete dependent variables. The models can include several nested random effects (intercepts and coefficients) representing unobserved heterogeneity at different levels of a hierarchical dataset. The required multivariate integrals are evaluated efficiently using spherical quadrature rules. Simulations show that adaptive quadrature performs well in a wide range of situations.

Original languageEnglish
Article numberN/A
Pages (from-to)301-323
Number of pages23
JournalJOURNAL OF ECONOMETRICS
Volume128
Issue number2
DOIs
Publication statusPublished - Oct 2005

Fingerprint

Dive into the research topics of 'Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects'. Together they form a unique fingerprint.

Cite this