MEF2 Is an In Vivo Immune-Metabolic Switch

Rebecca I Clark, Sharon W S Tan, Claire B Péan, Urmas Roostalu, Valérie Vivancos, Kévin Bronda, Martina Pilátová, Jingqi Fu, David W Walker, Rebecca Berdeaux, Frédéric Geissmann, Marc S Dionne

Research output: Contribution to journalArticlepeer-review

127 Citations (Scopus)

Abstract

Infections disturb metabolic homeostasis in many contexts, but the underlying connections are not completely understood. To address this, we use paired genetic and computational screens in Drosophila to identify transcriptional regulators of immunity and pathology and their associated target genes and physiologies. We show that Mef2 is required in the fat body for anabolic function and the immune response. Using genetic and biochemical approaches, we find that MEF2 is phosphorylated at a conserved site in healthy flies and promotes expression of lipogenic and glycogenic enzymes. Upon infection, this phosphorylation is lost, and the activity of MEF2 changes-MEF2 now associates with the TATA binding protein to bind a distinct TATA box sequence and promote antimicrobial peptide expression. The loss of phosphorylated MEF2 contributes to loss of anabolic enzyme expression in Gram-negative bacterial infection. MEF2 is thus a critical transcriptional switch in the adult fat body between metabolism and immunity.
Original languageEnglish
Pages (from-to)435–447
JournalCell
Volume155
Issue number2
DOIs
Publication statusPublished - 10 Oct 2013

Fingerprint

Dive into the research topics of 'MEF2 Is an In Vivo Immune-Metabolic Switch'. Together they form a unique fingerprint.

Cite this