Mid-cervical spinal cord contusion causes robust deficits in respiratory parameters and pattern variability

Philippa M. Warren, Cara Campanaro, Frank J. Jacono, Warren J. Alilain*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)
79 Downloads (Pure)

Abstract

Mid-cervical spinal cord contusion disrupts both the pathways and motoneurons vital to the activity of inspiratory muscles. The present study was designed to determine if a rat contusion model could result in a measurable deficit to both ventilatory and respiratory motor function under “normal” breathing conditions at acute to chronic stages post trauma. Through whole body plethysmography and electromyography we assessed respiratory output from three days to twelve weeks after a cervical level 3 (C3) contusion. Contused animals showed significant deficits in both tidal and minute volumes which were sustained from acute to chronic time points. We also examined the degree to which the contusion injury impacted ventilatory pattern variability through assessment of Mutual Information and Sample Entropy. Mid-cervical contusion significantly and robustly decreased the variability of ventilatory patterns. The enduring deficit to the respiratory motor system caused by contusion was further confirmed through electromyography recordings in multiple respiratory muscles. When isolated via a lesion, these contused pathways were insufficient to maintain respiratory activity at all time points post injury. Collectively these data illustrate that, counter to the prevailing literature, a profound and lasting ventilatory and respiratory motor deficit may be modelled and measured through multiple physiological assessments at all time points after cervical contusion injury.

Original languageEnglish
Pages (from-to)122-131
Number of pages10
JournalExperimental Neurology
Volume306
Issue number0
Early online date10 Apr 2018
DOIs
Publication statusPublished - 1 Aug 2018

Keywords

  • Cervical contusion
  • Minute volume
  • Respiration
  • Respiratory EMG
  • Tidal volume
  • Ventilatory pattern variability

Fingerprint

Dive into the research topics of 'Mid-cervical spinal cord contusion causes robust deficits in respiratory parameters and pattern variability'. Together they form a unique fingerprint.

Cite this