mNG-tagged fusion proteins and nanobodies to visualize tropomyosins in yeast and mammalian cells

Tomoyuki Hatano, Tzer Chyn Lim, Ingrid Billault-Chaumartin, Anubhav Dhar, Ying Gu, Teresa Massam-Wu, William Scott, Sushmitha Adishesha, Bernardo Chapa-Y-Lazo, Luke Springall, Lavanya Sivashanmugam, Masanori Mishima, Sophie G. Martin, Snezhana Oliferenko, Saravanan Palani, Mohan K. Balasubramanian

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.

Original languageEnglish
Article numberjcs260288
JournalJournal of cell science
Volume135
Issue number18
DOIs
Publication statusPublished - 15 Sept 2022

Keywords

  • Actin
  • Live imaging
  • mNeonGreen, Nanobody, Cytokinesis
  • Tropomyosin

Fingerprint

Dive into the research topics of 'mNG-tagged fusion proteins and nanobodies to visualize tropomyosins in yeast and mammalian cells'. Together they form a unique fingerprint.

Cite this