Modulation of acute effects of delta-9-tetrahydrocannabinol on psychotomimetic effects, cognition and brain function by previous cannabis exposure

Marco Colizzi, Philip McGuire, Vincent Giampietro, Steve Williams, Mick Brammer, Sagnik Bhattacharyya*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
390 Downloads (Pure)

Abstract

Cannabis use has been associated with psychosis and cognitive dysfunction. Some evidence suggests that the acute behavioral and neurocognitive effects of the main active ingredient in cannabis, (−)-trans-Δ9-tetrahydrocannabinol (∆9-THC), might be modulated by previous cannabis exposure. However, this has not been investigated either using a control group of non-users, or following abstinence in modest cannabis users, who represent the majority of recreational users. Twenty-four healthy men participated in a double-blind, randomized, placebo-controlled, repeated-measures, within-subject, ∆9-THC challenge study. Compared to non-users (N=12; <5 lifetime cannabis joints smoked), abstinent modest cannabis users (N=12; 24.5±9 lifetime cannabis joints smoked) showed worse performance and stronger right hemispheric activation during cognitive processing, independent of the acute challenge (all P≤0.047). Acute ∆9-THC administration produced transient anxiety and psychotomimetic symptoms (all P≤0.02), the latter being greater in non-users compared to users (P=0.040). Non-users under placebo (control group) activated specific brain areas to perform the tasks, while deactivating others. An opposite pattern was found under acute (∆9-THC challenge in non-users) as well as residual (cannabis users under placebo) effect of ∆9-THC. Under ∆9-THC, cannabis users showed brain activity patterns intermediate between those in non-users under placebo (control group), and non-users under ∆9-THC (acute effect) and cannabis users under placebo (residual effect). In non-users, the more severe the ∆9-THC-induced psychotomimetic symptoms and cognitive impairments, the more pronounced was the neurophysiological alteration (all P≤0.036). Previous modest cannabis use blunts the acute behavioral and neurophysiological effects of ∆9-THC, which are more marked in people who have never used cannabis.

Original languageEnglish
JournalEuropean Neuropsychopharmacology
Early online date21 Jun 2018
DOIs
Publication statusE-pub ahead of print - 21 Jun 2018

Keywords

  • Cannabis use
  • Cognitive functioning
  • Delta-9-tetrahydrocannabinol
  • Functional Magnetic Resonance Imaging
  • Psychosis
  • Tolerance

Fingerprint

Dive into the research topics of 'Modulation of acute effects of delta-9-tetrahydrocannabinol on psychotomimetic effects, cognition and brain function by previous cannabis exposure'. Together they form a unique fingerprint.

Cite this