King's College London

Research portal

Molecular genetic and biochemical characterization of a putative family of zinc metalloproteins in Caenorhabditis elegans

Research output: Contribution to journalArticle

Poulami Chaudhuri, Hasan Tanvir Imam, Yona Essig, Jovaras Krasauskas, Samuel M Webb, Claudia A Blindauer, Stephen R Stürzenbaum

Original languageEnglish
Pages (from-to)1814-1823
Number of pages10
Issue number12
Early online date16 Nov 2018
Accepted/In press5 Sep 2018
E-pub ahead of print16 Nov 2018
Published16 Nov 2018


King's Authors


Four highly similar genes (W08E12.2, W08E12.3, W08E12.4 and W08E12.5) which are consecutively aligned on chromosome IV of the C. elegans genome are predicted to code for small (120-141aa) yet cysteine rich (18-19 cysteines) proteins. Cloning and sequencing of the genomic regions of the isoforms confirmed the presence and order of all genes. The generation of transgenic worms strains with an integrated single copy or extrachromosomal multi-copy PW08E12.3;W08E12.4::GFP uncovered that W08E12.3 and W08E12.4 are constitutively expressed in the pharynx and significantly induced in worms exposed to 100 μM Zn. Knockdown by RNAi did not have a marked consequence on reproductive performance nor was a Zn-dependent effect on nematode growth observed. However, RNAi of these genes led to an accumulation of Zn in the intestinal cells. W08E12.3 was recombinantly expressed in E. coli and the purified protein was shown to be able to bind up to 6.5 Zn molecules at neutral pH. Zn-binding was acid-labile and the apo protein was observed at pH < 4.3. This characterization suggests W08E12.2, W08E12.3, W08E12.4 and W08E12.5 belong to a family of putative Metalloproteins which, akin to metallothioneins, may play an important role in Zn-sensing, homeostasis and/or detoxification.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454