Morphological Differentiation of Neurons on Microtopographic Substrates Fabricated by Rolled-Up Nanotechnology

Sabine Schulze, Gaoshan Huang, Matthias Krause, Deborah Aubyn, Vladimir A. Bolanos Quinones, Christine K. Schmidt, Yongfeng Mei, Oliver G. Schmidt

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

Arrays of transparent rolled-up microtubes can easily be mass-produced using a combination of conventional photolithography, electron beam depositioning, and chemical etching techniques. Here, we culture primary mouse motor neurons and immortalised CAD cells, a cell line derived from the central nervous system, on various microtube substrates to investigate the influence of topographical surface features on the growth and differentiation behaviour of these cells. Our results indicate that the microtube chips not only support growth of both cell types but also provide a well-defined, geometrically confined 3D cell culture scaffold. Strikingly, our micropatterns act as a platform for axon guidance with protruding cell extensions aligning in the direction of the microtubes and forming complex square-shaped grid-like neurite networks. Our experiments open up a cost-efficient and bio-compatible way of analysing single cell behaviour in the context of advanced micro-/nanostructures with various biological applications ranging from neurite protection studies to cell sensor development.
Original languageEnglish
Pages (from-to)B558 - B564
JournalADVANCED ENGINEERING MATERIALS
Volume12
Issue number9
DOIs
Publication statusPublished - Sept 2010

Fingerprint

Dive into the research topics of 'Morphological Differentiation of Neurons on Microtopographic Substrates Fabricated by Rolled-Up Nanotechnology'. Together they form a unique fingerprint.

Cite this