King's College London

Research portal

Morphology of subcortical brain nuclei is associated with autonomic function in healthy humans

Research output: Contribution to journalArticle

James K Ruffle, Steven J Coen, Vincent Giampietro, Steven C R Williams, A Vania Apkarian, Adam D Farmer, Qasim Aziz

Original languageEnglish
Pages (from-to)381-392
JournalHuman Brain Mapping
Issue number1
Early online date28 Oct 2017
Publication statusPublished - Jan 2018


King's Authors


The autonomic nervous system (ANS) is a brain body interface which serves to maintain homeostasis by influencing a plethora of physiological processes, including metabolism, cardiorespiratory regulation and nociception. Accumulating evidence suggests that ANS function is disturbed in numerous prevalent clinical disorders, including irritable bowel syndrome and fibromyalgia. While the brain is a central hub for regulating autonomic function, the association between resting autonomic activity and subcortical morphology has not been comprehensively studied and thus was our aim. In 27 healthy subjects [14 male and 13 female; mean age 30 years (range 22-53 years)], we quantified resting ANS function using validated indices of cardiac sympathetic index (CSI) and parasympathetic cardiac vagal tone (CVT). High resolution structural magnetic resonance imaging scans were acquired, and differences in subcortical nuclei shape, that is, 'deformation', contingent on resting ANS activity were investigated. CSI positively correlated with outward deformation of the brainstem, right nucleus accumbens, right amygdala and bilateral pallidum (all thresholded to corrected P < 0.05). In contrast, parasympathetic CVT negatively correlated with inward deformation of the right amygdala and pallidum (all thresholded to corrected P < 0.05). Left and right putamen volume positively correlated with CVT (r = 0.62, P = 0.0047 and r = 0.59, P = 0.008, respectively), as did the brainstem (r = 0.46, P = 0.049). These data provide novel evidence that resting autonomic state is associated with differences in the shape and volume of subcortical nuclei. Thus, subcortical morphological brain differences in various disorders may partly be attributable to perturbation in autonomic function. Further work is warranted to investigate these findings in clinical populations. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454