Morphoregulation by acetylcholinesterase in fibroblasts and astrocytes

Alexandra A. Anderson, Dmitry S. Ushakov, Michael A. Ferenczi, Ryoichi Mori, Paul Martin, Jane L. Saffell

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


Acetylcholinesterase (AChE) terminates neurotransmission at cholinergic synapses by hydrolysing acetylcholine, but also has non-enzymatic morphoregulatory effects on neurons such as stimulation of neurite outgrowth. It is widely expressed outside the nervous system, but its function in non-neuronal cells is unclear. Here we have investigated the distribution and function of AChE in fibroblasts and astrocytes. We show that these cells express high levels of AChE protein that co-migrates with recombinant AChE but contains little catalytic activity. Fibroblasts express transcripts encoding the synaptic AChE-T isoform and its membrane anchoring peptide PRiMA-1. AChE is strikingly distributed in arcs, rings and patches at the leading edge of spreading and migrating fibroblasts and astrocytes, close to the cell-substratum interface, and in neuronal growth cones. During in vivo healing of mouse skin, AChE becomes highly expressed in reepithelial ising epidermal keratinocytes 1 day after wounding. AChE appears to be functionally important for polarised cell migration, since an AChE antibody reduces substratum adhesion of fibroblasts, and slows wound healing in vitro as effectively as a β1-integrin antibody. Moreover, elevation of AChE expression increases fibroblast wound healing independently of catalytic activity. Interestingly, AChE surface patches precisely co-localise with amyloid precursor protein and the extracellular matrix protein perlecan, but not focal adhesions or α-dystroglycan, and contain a high concentration of tyrosine phosphorylated proteins in spreading cells. These findings suggest that cell surface AChE, possibly in a novel signalling complex containing APP and perlecan, contributes to a generalised mechanism for polarised membrane protrusion and migration in all adherent cells.

Original languageEnglish
Pages (from-to)82-100
Number of pages19
JournalJournal of Cellular Physiology
Issue number1
Publication statusPublished - 1 Apr 2008


Dive into the research topics of 'Morphoregulation by acetylcholinesterase in fibroblasts and astrocytes'. Together they form a unique fingerprint.

Cite this