Abstract
Objectives: To calculate 3D-segmented total lung volume (TLV) in fetuses with thoracic anomalies using deformable slice-to-volume registration (DSVR) with comparison to 2D-manual segmentation. To establish a normogram of TLV calculated by DSVR in healthy control fetuses. Methods: A pilot study at a single regional fetal medicine referral centre included 16 magnetic resonance imaging (MRI) datasets of fetuses (22–32 weeks gestational age). Diagnosis was CDH (n = 6), CPAM (n = 2), and healthy controls (n = 8). Deformable slice-to-volume registration was used for reconstruction of 3D isotropic (0.85 mm) volumes of the fetal body followed by semi-automated lung segmentation. 3D TLV were compared to traditional 2D-based volumetry. Abnormal cases referenced to a normogram produced from 100 normal fetuses whose TLV was calculated by DSVR only. Results: Deformable slice-to-volume registration-derived TLV values have high correlation with the 2D-based measurements but with a consistently lower volume; bias −1.44 cm3 [95% limits: −2.6 to −0.3] with improved resolution to exclude hilar structures even in cases of motion corruption or very low lung volumes. Conclusions: Deformable slice-to-volume registration for fetal lung MRI aids analysis of motion corrupted scans and does not suffer from the interpolation error inherent to 2D-segmentation. It increases information content of acquired data in terms of visualising organs in 3D space and quantification of volumes, which may improve counselling and surgical planning.
Original language | English |
---|---|
Pages (from-to) | 628-635 |
Number of pages | 8 |
Journal | Prenatal Diagnosis |
Volume | 42 |
Issue number | 5 |
Early online date | 15 Mar 2022 |
DOIs | |
Publication status | Published - May 2022 |