Multiplicative Gain Modulation Arises Through Unsupervised Learning in a Predictive Coding Model of Cortical Function

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
339 Downloads (Pure)

Abstract

The combination of two or more population-coded signals in a neural model of predictive coding can give rise to multiplicative gain modulation in the response properties of individual neurons. Synaptic weights generating these multiplicative response properties can be learned using an unsupervised, Hebbian learning rule. The behavior of the model is compared to empirical data on gaze-dependent gain modulation of cortical cells and found to be in good agreement with a range of physiological observations. Furthermore, it is demonstrated that the model can learn to represent a set of basis functions. This letter thus connects an often-observed neurophysiological phenomenon and important neurocomputational principle (gain modulation) with an influential theory of brain operation (predictive coding).
Original languageEnglish
Article numberN/A
Pages (from-to)1536-1567
Number of pages32
JournalNeural Computation
Volume23
Issue number6
DOIs
Publication statusPublished - Jun 2011

Fingerprint

Dive into the research topics of 'Multiplicative Gain Modulation Arises Through Unsupervised Learning in a Predictive Coding Model of Cortical Function'. Together they form a unique fingerprint.

Cite this