Natural Language Processing for Ancient Greek: Design, Advantages, and Challenges of Language Models

Silvia Stopponi, Nilo Pedrazzini, Barbara McGillivray, Saskia Peels-Matthey, Malvina Nissim

Research output: Contribution to journalArticlepeer-review

15 Downloads (Pure)


Computational methods proved to produce meaningful and usable results to study word semantics, including semantic change. These methods, belonging to the field of Natural Language Processing, have recently been applied to ancient languages, in particular, language modelling has been applied to Ancient Greek, the language on which we focus. In this contribution we explain how vector representations can be computed from word co-occurrences in a corpus word and be used to locate words in a semantic space, and what kind of semantic information can be extracted from language models. We compare three different kinds of language models that can be applied to the study of Ancient Greek semantics: a count-based model, a word embedding model and a syntactic embedding model, and we show examples of how the quality of their representations can be assessed. We highlight advantages and potential of these methods, especially for the study of semantic change, together with its limitations.
Original languageEnglish
Publication statusAccepted/In press - 16 Oct 2023

Cite this