Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency

Isabelle R.E. Nett, Carla Mulas, Laurent Gatto, Kathryn S. Lilley, Austin Smith*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK-responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK-depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions.

Original languageEnglish
Article numbere45642
JournalEMBO Reports
Issue number8
Publication statusPublished - Aug 2018


  • embryonic stem cells
  • mitogen-activated protein kinase
  • pluripotency
  • RSK
  • signalling feedback


Dive into the research topics of 'Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency'. Together they form a unique fingerprint.

Cite this