TY - JOUR
T1 - Neurocognitive Functioning in Individuals at Clinical High Risk for Psychosis
T2 - A Systematic Review and Meta-analysis
AU - Catalan, Ana
AU - Salazar De Pablo, Gonzalo
AU - Aymerich, Claudia
AU - Damiani, Stefano
AU - Sordi, Veronica
AU - Radua, Joaquim
AU - Oliver, Dominic
AU - McGuire, Philip
AU - Giuliano, Anthony J.
AU - Stone, William S.
AU - Fusar-Poli, Paolo
N1 - Funding Information:
personal fees from Janssen-Cilag and grants from the Carlos III Health Institute outside the submitted work. Dr Salazar de Pablo reports grants from Fundación Alicia Koplowitz and personal fees from Janssen-Cilag outside the submitted work. Dr Fusar-Poli reports research fees from Lundbeck and honoraria from Lundbeck, Angelini, Menarini, and Boehringer Ingelheim outside the submitted work. No other disclosures were reported.
Publisher Copyright:
© 2021 American Medical Association. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/8
Y1 - 2021/8
N2 - Importance: Neurocognitive functioning is a potential biomarker to advance detection, prognosis, and preventive care for individuals at clinical high risk for psychosis (CHR-P). The current consistency and magnitude of neurocognitive functioning in individuals at CHR-P are undetermined. Objective: To provide an updated synthesis of evidence on the consistency and magnitude of neurocognitive functioning in individuals at CHR-P. Data Sources: Web of Science database, Cochrane Central Register of Reviews, and Ovid/PsycINFO and trial registries up to July 1, 2020. Study Selection: Multistep literature search compliant with Preferred Reporting Items for Systematic Reviews and Meta-analyses and Meta-analysis of Observational Studies in Epidemiology performed by independent researchers to identify original studies reporting on neurocognitive functioning in individuals at CHR-P. Data Extraction and Synthesis: Independent researchers extracted the data, clustering the neurocognitive tasks according to 7 Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) domains and 8 CHR-P domains. Random-effect model meta-analyses, assessment of publication biases and study quality, and meta-regressions were conducted. Main Outcomes and Measures: The primary effect size measure was Hedges g of neurocognitive functioning in individuals at CHR-P (1) compared with healthy control (HC) individuals or (2) compared with individuals with first-episode psychosis (FEP) or (3) stratified for the longitudinal transition to psychosis. Results: A total of 78 independent studies were included, consisting of 5162 individuals at CHR-P (mean [SD; range] age, 20.2 [3.3; 12.0-29.0] years; 2529 [49.0%] were female), 2865 HC individuals (mean [SD; range] age, 21.1 [3.6; 12.6-29.2] years; 1490 [52.0%] were female), and 486 individuals with FEP (mean [SD; range] age, 23.0 [2.0; 19.1-26.4] years; 267 [55.9%] were female). Compared with HC individuals, individuals at CHR-P showed medium to large deficits on the Stroop color word reading task (g = -1.17; 95% CI, -1.86 to -0.48), Hopkins Verbal Learning Test-Revised (g = -0.86; 95% CI, -1.43 to -0.28), digit symbol coding test (g = -0.74; 95% CI, -1.19 to -0.29), Brief Assessment of Cognition Scale Symbol Coding (g = -0.67; 95% CI, -0.95 to -0.39), University of Pennsylvania Smell Identification Test (g = -0.55; 95% CI, -0.97 to -0.12), Hinting Task (g = -0.53; 95% CI, -0.77 to -0.28), Rey Auditory Verbal Learning Test (g = -0.50; 95% CI, -0.78 to -0.21), California Verbal Learning Test (CVLT) (g = -0.50; 95% CI, -0.64 to -0.36), and National Adult Reading Test (g = -0.52; 95% CI, -1.01 to -0.03). Individuals at CHR-P were less impaired than individuals with FEP. Longitudinal transition to psychosis from a CHR-P state was associated with medium to large deficits in the CVLT task (g = -0.58; 95% CI, -1.12 to -0.05). Meta-regressions found significant effects for age and education on processing speed. Conclusions and Relevance: Findings from this meta-analysis support neurocognitive dysfunction as a potential detection and prognostic biomarker in individuals at CHR-P. These findings may advance clinical research and inform preventive approaches..
AB - Importance: Neurocognitive functioning is a potential biomarker to advance detection, prognosis, and preventive care for individuals at clinical high risk for psychosis (CHR-P). The current consistency and magnitude of neurocognitive functioning in individuals at CHR-P are undetermined. Objective: To provide an updated synthesis of evidence on the consistency and magnitude of neurocognitive functioning in individuals at CHR-P. Data Sources: Web of Science database, Cochrane Central Register of Reviews, and Ovid/PsycINFO and trial registries up to July 1, 2020. Study Selection: Multistep literature search compliant with Preferred Reporting Items for Systematic Reviews and Meta-analyses and Meta-analysis of Observational Studies in Epidemiology performed by independent researchers to identify original studies reporting on neurocognitive functioning in individuals at CHR-P. Data Extraction and Synthesis: Independent researchers extracted the data, clustering the neurocognitive tasks according to 7 Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) domains and 8 CHR-P domains. Random-effect model meta-analyses, assessment of publication biases and study quality, and meta-regressions were conducted. Main Outcomes and Measures: The primary effect size measure was Hedges g of neurocognitive functioning in individuals at CHR-P (1) compared with healthy control (HC) individuals or (2) compared with individuals with first-episode psychosis (FEP) or (3) stratified for the longitudinal transition to psychosis. Results: A total of 78 independent studies were included, consisting of 5162 individuals at CHR-P (mean [SD; range] age, 20.2 [3.3; 12.0-29.0] years; 2529 [49.0%] were female), 2865 HC individuals (mean [SD; range] age, 21.1 [3.6; 12.6-29.2] years; 1490 [52.0%] were female), and 486 individuals with FEP (mean [SD; range] age, 23.0 [2.0; 19.1-26.4] years; 267 [55.9%] were female). Compared with HC individuals, individuals at CHR-P showed medium to large deficits on the Stroop color word reading task (g = -1.17; 95% CI, -1.86 to -0.48), Hopkins Verbal Learning Test-Revised (g = -0.86; 95% CI, -1.43 to -0.28), digit symbol coding test (g = -0.74; 95% CI, -1.19 to -0.29), Brief Assessment of Cognition Scale Symbol Coding (g = -0.67; 95% CI, -0.95 to -0.39), University of Pennsylvania Smell Identification Test (g = -0.55; 95% CI, -0.97 to -0.12), Hinting Task (g = -0.53; 95% CI, -0.77 to -0.28), Rey Auditory Verbal Learning Test (g = -0.50; 95% CI, -0.78 to -0.21), California Verbal Learning Test (CVLT) (g = -0.50; 95% CI, -0.64 to -0.36), and National Adult Reading Test (g = -0.52; 95% CI, -1.01 to -0.03). Individuals at CHR-P were less impaired than individuals with FEP. Longitudinal transition to psychosis from a CHR-P state was associated with medium to large deficits in the CVLT task (g = -0.58; 95% CI, -1.12 to -0.05). Meta-regressions found significant effects for age and education on processing speed. Conclusions and Relevance: Findings from this meta-analysis support neurocognitive dysfunction as a potential detection and prognostic biomarker in individuals at CHR-P. These findings may advance clinical research and inform preventive approaches..
UR - http://www.scopus.com/inward/record.url?scp=85108511116&partnerID=8YFLogxK
U2 - 10.1001/jamapsychiatry.2021.1290
DO - 10.1001/jamapsychiatry.2021.1290
M3 - Review article
C2 - 34132736
AN - SCOPUS:85108511116
SN - 2168-622X
VL - 78
SP - 859
EP - 867
JO - JAMA Psychiatry
JF - JAMA Psychiatry
IS - 8
ER -