Abstract
Innate immune cells express toll-like receptor-9 (TLR9) and respond to unmethylated, CG dinucleotide motif-rich DNA released from bacteria during infection or endogenous cells during autoimmune tissue injury. Oligonucleotides containing CG dinucleotide (CpG-DNA) mimic the effect of unmethylated DNA and stimulate TLR9. CpG-DNA was cytotoxic to neurons in organotypic brain cultures. Neurotoxicity of CpG-DNA was mediated via microglial cells and started primarily from neurites as determined by time-lapse imaging of enhanced green fluorescent protein (EGFP)-transfected neurons. Cultured brain microglial cells expressed TLR9 and responded to CpG-DNA by production of the inflammatory mediators nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha). Blockade of NO synthase and TNF-alpha prevented damage of neurites and neurotoxicity of CpG-DNA. The data suggest that stimulation of microglia via TLR9 and subsequent release of NO and TNF-alpha is a major source of neurotoxicity in bacterial and autoimmune brain tissue injury
Original language | English |
---|---|
Pages (from-to) | 412 - 414 |
Number of pages | 3 |
Journal | Faseb Journal |
Volume | 18 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2004 |