TY - JOUR
T1 - Neutrophil toll-like receptor 9 expression and the systemic inflammatory response in acetaminophen-induced acute liver failure
AU - Manakkat Vijay, Godhev K.
AU - Ryan, Jennifer M.
AU - Abeles, Robin D.
AU - Ramage, Stephen
AU - Patel, Vishal
AU - Bernsmeier, Christine
AU - Riva, Antonio
AU - McPhail, Mark J.W.
AU - Tranah, Thomas H.
AU - Markwick, Lee J.L.
AU - Taylor, Nicholas J.
AU - Bernal, William
AU - Auzinger, Georg
AU - Willars, Chris
AU - Chokshi, Shilpa
AU - Wendon, Julia A.
AU - Ma, Yun
AU - Shawcross, Debbie L.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Objectives: There is a marked propensity for patients with acetaminophen-induced acute liver failure to develop sepsis, which may culminate in multiple organ failure and death. Toll-like receptors sense pathogens and induce inflammatory responses, but whether this is protective or detrimental in acetaminophen-induced acute liver failure remains unknown. Design, Setting, and Patients: We assessed Toll-like receptor expression on circulating neutrophils and their function in 24 patients with acetaminophen-induced acute liver failure and compared with 10 healthy controls. Interventions: Neutrophil Toll-like receptor 2, -4, and -9 expression and cytokine production and function were studied ex vivo at baseline and following stimulation with lipopolysaccharide, oligodeoxynucleotides, ammonium chloride, and interleukin-8. To examine the influence of acetaminophen-induced acute liver failure plasma and endogenous DNA on Toll-like receptors-9 expression, healthy neutrophils were incubated with acetaminophen-induced acute liver failure plasma with and without deoxyribonuclease-I. Measurements and Main Results: Circulating neutrophil Toll-like receptor 9 expression was increased in acetaminophen-induced acute liver failure on day 1 compared with healthy controls (p = 0.0002), whereas Toll-like receptor 4 expression was decreased compared with healthy controls (p < 0.0001). Toll-like receptor 2 expression was unchanged. Neutrophil phagocytic activity was decreased, and spontaneous oxidative burst increased in all patients with acetaminophen-induced acute liver failure compared with healthy controls (p < 0.0001). Neutrophil Toll-like receptor 9 expression correlated with plasma interleukin-8 and peak ammonia concentration (r = 0.6; p < 0.05) and increased with severity of hepatic encephalopathy (grade 0-2 vs 3/4) and systemic inflammatory response syndrome score (0-1 vs 2-4) (p < 0.05). Those patients with advanced hepatic encephalopathy (grade 3/4) or high systemic inflammatory response syndrome score (2-4) on day 1 had higher neutrophil Toll-like receptor 9 expression, arterial ammonia concentration, and plasma interleukin-8 associated with neutrophil exhaustion. Healthy neutrophil Toll-like receptor 9 expression increased upon stimulation with acetaminophen-induced acute liver failure plasma, which was abrogated by preincubation with deoxyribonuclease-I. Intracellular Toll-like receptor 9 was induced by costimulation with interleukin-8 and ammonia. Conclusion: These data point to neutrophil Toll-like receptor 9 expression in acetaminophen-induced acute liver failure being mediated both by circulating endogenous DNA as well as ammonia and interleukin-8 in a synergistic manner inducing systemic inflammation, neutrophil exhaustion, and exacerbating hepatic encephalopathy.
AB - Objectives: There is a marked propensity for patients with acetaminophen-induced acute liver failure to develop sepsis, which may culminate in multiple organ failure and death. Toll-like receptors sense pathogens and induce inflammatory responses, but whether this is protective or detrimental in acetaminophen-induced acute liver failure remains unknown. Design, Setting, and Patients: We assessed Toll-like receptor expression on circulating neutrophils and their function in 24 patients with acetaminophen-induced acute liver failure and compared with 10 healthy controls. Interventions: Neutrophil Toll-like receptor 2, -4, and -9 expression and cytokine production and function were studied ex vivo at baseline and following stimulation with lipopolysaccharide, oligodeoxynucleotides, ammonium chloride, and interleukin-8. To examine the influence of acetaminophen-induced acute liver failure plasma and endogenous DNA on Toll-like receptors-9 expression, healthy neutrophils were incubated with acetaminophen-induced acute liver failure plasma with and without deoxyribonuclease-I. Measurements and Main Results: Circulating neutrophil Toll-like receptor 9 expression was increased in acetaminophen-induced acute liver failure on day 1 compared with healthy controls (p = 0.0002), whereas Toll-like receptor 4 expression was decreased compared with healthy controls (p < 0.0001). Toll-like receptor 2 expression was unchanged. Neutrophil phagocytic activity was decreased, and spontaneous oxidative burst increased in all patients with acetaminophen-induced acute liver failure compared with healthy controls (p < 0.0001). Neutrophil Toll-like receptor 9 expression correlated with plasma interleukin-8 and peak ammonia concentration (r = 0.6; p < 0.05) and increased with severity of hepatic encephalopathy (grade 0-2 vs 3/4) and systemic inflammatory response syndrome score (0-1 vs 2-4) (p < 0.05). Those patients with advanced hepatic encephalopathy (grade 3/4) or high systemic inflammatory response syndrome score (2-4) on day 1 had higher neutrophil Toll-like receptor 9 expression, arterial ammonia concentration, and plasma interleukin-8 associated with neutrophil exhaustion. Healthy neutrophil Toll-like receptor 9 expression increased upon stimulation with acetaminophen-induced acute liver failure plasma, which was abrogated by preincubation with deoxyribonuclease-I. Intracellular Toll-like receptor 9 was induced by costimulation with interleukin-8 and ammonia. Conclusion: These data point to neutrophil Toll-like receptor 9 expression in acetaminophen-induced acute liver failure being mediated both by circulating endogenous DNA as well as ammonia and interleukin-8 in a synergistic manner inducing systemic inflammation, neutrophil exhaustion, and exacerbating hepatic encephalopathy.
KW - acute liver failure
KW - encephalopathy
KW - neutrophil
KW - toll-like receptor 9
UR - http://www.scopus.com/inward/record.url?scp=84983109593&partnerID=8YFLogxK
U2 - 10.1097/CCM.0000000000001309
DO - 10.1097/CCM.0000000000001309
M3 - Article
C2 - 26457748
SN - 0090-3493
VL - 44
SP - 43
EP - 53
JO - Critical Care Medicine
JF - Critical Care Medicine
IS - 1
ER -