New Bifunctional Chelators Incorporating Dibromomaleimide Groups for Radiolabeling of Antibodies with Positron Emission Tomography Imaging Radioisotopes

Matt Farleigh, Truc Pham, Zilin Yu, Jana Kim, Kavitha Sunassee, George Firth, Nafsika Forte, Vijay Chudasama, James R. Baker, Nicholas J. Long, Charlotte Rivas, Michelle Ma

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
51 Downloads (Pure)

Abstract

Positron Emission Tomography (PET) imaging with antibody-based contrast agents frequently uses the radioisotopes [64Cu]Cu2+ and [89Zr]Zr4+. The macrobicyclic chelator commonly known as sarcophagine (sar) is ideal for labeling receptor-targeted biomolecules with [64Cu]Cu2+. The siderophore chelator, desferrioxamine-B (dfo), has been widely used to incorporate [89Zr]Zr4+ into antibodies. Here, we describe new bifunctional chelators of sar and dfo: these chelators have been functionalized with dibromomaleimides (dbm), that enable site-specific and highly stable attachment of molecular cargoes to reduced, solvent-accessible, interstrand native disulfide groups. The new sar-dbm and dfo-dbm derivatives can be easily conjugated with the IgG antibody trastuzumab via reaction with reduced interstrand disulfide groups to give site-specifically modified dithiomaleamic acid (dtm) conjugates, sar-dtm-trastuzumab and dfo-dtm-trastuzumab, in which interstrand disulfides are rebridged covalently with a small molecule linker. Both sar- and dfo-dtm-trastuzumab conjugates have been radiolabeled with [64Cu]Cu2+ and [89Zr]Zr4+, respectively, in near quantitative radiochemical yield (>99%). Serum stability studies, in vivo PET imaging, and biodistribution analyses using these radiolabeled immunoconjugates demonstrate that both [64Cu]Cu-sar-dtm-trastuzumab and [89Zr]Zr-dfo-dtm-trastuzumab possess high stability in biological milieu. Dibromomaleimide technology can be easily applied to enable stable, site-specific attachment of radiolabeled chelators, such as sar and dfo, to native interstrand disulfide regions of antibodies, enabling tracking of antibodies with PET imaging.

Original languageEnglish
Pages (from-to)1214-1222
Number of pages9
JournalBioconjugate Chemistry
Volume32
Issue number7
DOIs
Publication statusPublished - 21 Jul 2021

Fingerprint

Dive into the research topics of 'New Bifunctional Chelators Incorporating Dibromomaleimide Groups for Radiolabeling of Antibodies with Positron Emission Tomography Imaging Radioisotopes'. Together they form a unique fingerprint.

Cite this