New Classical Integrable Systems from Generalized TTA¯ -Deformations

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
50 Downloads (Pure)

Abstract

We introduce and study a novel class of classical integrable many-body systems obtained by generalized TT¯ deformations of free particles. Deformation terms are bilinears in densities and currents for the continuum of charges counting asymptotic particles of different momenta. In these models, which we dub "semiclassical Bethe systems"for their link with the dynamics of Bethe ansatz wave packets, many-body scattering processes are factorized, and two-body scattering shifts can be set to an almost arbitrary function of momenta. The dynamics is local but inherently different from that of known classical integrable systems. At short scales, the geometry of the deformation is dynamically resolved: either particles are slowed down (more space available), or accelerated via a novel classical particle-pair creation and annihilation process (less space available). The thermodynamics both at finite and infinite volumes is described by the equations of (or akin to) the thermodynamic Bethe ansatz, and at large scales generalized hydrodynamics emerge.

Original languageEnglish
Article number251602
JournalPhysical Review Letters
Volume132
Issue number25
DOIs
Publication statusPublished - 21 Jun 2024

Fingerprint

Dive into the research topics of 'New Classical Integrable Systems from Generalized TTA¯ -Deformations'. Together they form a unique fingerprint.

Cite this