King's College London

Research portal

New kinematic multi-section model for catheter contact force estimation and steering

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

Original languageEnglish
Title of host publicationIEEE International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Print)9781509037629
Accepted/In press1 Feb 2016
E-pub ahead of print1 Dec 2016
Event2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 - Daejeon, Korea, Republic of
Duration: 9 Oct 201614 Oct 2016


Conference2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Country/TerritoryKorea, Republic of


King's Authors


Contact force play is a significant role in success of the cardiac ablation. However, it is still challenging to estimate contact force when a catheter is under large bending and multiple contacts. This paper develops a new multi-section static model of the tendon-driven catheters for both real-time intrinsic force sensing and interaction control. The model allows estimating the catheter shape by the external force at arbitrary location. Also, an algorithm is developed for the contact force estimation using the shape estimation with the catheter end-position tracking and tension feedback. In this study, we validated the contact force and shape estimation using a robotic platform, which steers a catheter consisting of 4 tendons with tension feedback. The shape estimation results show that the model can accurately predict the catheter shape; the position difference between measured and estimated was 2.5mm. The results of the contact force estimation show that 3-dimensional contact forces can be estimated accurately using the proposed method. The magnitude of contact force error was 0.0117N with 350Hz update rate.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454