King's College London

Research portal

Parabolic dunes and their transformations under environmental and climatic changes: Towards a conceptual framework for understanding and prediction

Research output: Contribution to journalArticlepeer-review

Original languageEnglish
Pages (from-to)123-148
Number of pages26
Published1 Jan 2015


King's Authors


The formation and evolution of parabolic aeolian dunes depend on vegetation, and as such are particularly sensitive to changes in environmental controls (e.g., temperature, precipitation, and wind regime) as well as to human disturbances (e.g., grazing, agriculture, and recreation). Parabolic dunes can develop from the stabilisation of highly mobile barchan dunes and transverse dunes as well as from blowouts, as a consequence of colonisation and establishment of vegetation when aeolian sand transport is reduced and/or when water stress is relieved (by increasing precipitation, for instance). Conversely, existing parabolic dunes can be activated and may be transformed into barchan dunes and/or transverse dunes when vegetation suffers environmental or anthropogenic stresses. Predicted increases in temperature and drought severity in various regions raise concerns that dune activation and transformations may intensify, and this intensification would have far-reaching implications for environmental, social, and economic sustainability. To date, a broad examination of the development of parabolic dunes and their related transformations across a variety of climate gradients has been absent. This paper reviews existing literature, compares data on the morphology and development of parabolic dunes in a comprehensive global inventory, and scrutinises the mechanisms of different dune transformations and the eco-geomorphic interactions involved. This knowledge is then integrated into a conceptual framework to facilitate understanding and prediction of potential aeolian dune transformations induced by changes in environmental controls and human activities. This conceptual framework can aid judicious land management policies for better adaptations to climatic changes.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454