## Abstract

Let be a totally real field and let be an odd prime which is totally split in. We define and study one-dimensional 'partial' eigenvarieties interpolating Hilbert modular forms over with weight varying only at a single place above. For these eigenvarieties, we show that methods developed by Liu, Wan and Xiao apply and deduce that, over a boundary annulus in weight space of sufficiently small radius, the partial eigenvarieties decompose as a disjoint union of components which are finite over weight space. We apply this result to prove the parity version of the Bloch-Kato conjecture for finite slope Hilbert modular forms with trivial central character (with a technical assumption if is odd), by reducing to the case of parallel weight. As another consequence of our results on partial eigenvarieties, we show, still under the assumption that is totally split in, that the 'full' (dimension) cuspidal Hilbert modular eigenvariety has the property that many (all, if is even) irreducible components contain a classical point with noncritical slopes and parallel weight (with some character at whose conductor can be explicitly bounded), or any other algebraic weight.

Original language | English |
---|---|

Article number | E27 |

Pages (from-to) | 1-36 |

Number of pages | 36 |

Journal | FORUM OF MATHEMATICS SIGMA |

Volume | 7 |

Early online date | 4 Sept 2019 |

DOIs | |

Publication status | Published - Sept 2019 |

## Keywords

- 11F33 (primary)
- 11G40 (secondary)
- 2010 Mathematics Subject Classification: