TY - CHAP
T1 - Patch-Based Brain Age Estimation from MR Images
AU - Bintsi, Kyriaki Margarita
AU - Baltatzis, Vasileios
AU - Kolbeinsson, Arinbjörn
AU - Hammers, Alexander
AU - Rueckert, Daniel
N1 - Funding Information:
KMB would like to acknowledge funding from the EPSRC Centre for Doctoral Training in Medical Imaging (EP/L015226/1).
Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject’s biological brain age and their chronological age. This is a potential biomarker for neurodegeneration, e.g. as part of Alzheimer’s disease. Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals. Many studies have been proposed for the prediction of chronological age from brain MRI using machine learning and specifically deep learning techniques. Contrary to most studies, which use the whole brain volume, in this study, we develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator. In this way, we can obtain a visualization of the regions that play the most important role for estimating brain age, leading to more anatomically driven and interpretable results, and thus confirming relevant literature which suggests that the ventricles and the hippocampus are the areas that are most informative. In addition, we leverage this knowledge in order to improve the overall performance on the task of age estimation by combining the results of different patches using an ensemble method, such as averaging or linear regression. The network is trained on the UK Biobank dataset and the method achieves state-of-the-art results with a Mean Absolute Error of 2.46 years for purely regional estimates, and 2.13 years for an ensemble of patches before bias correction, while 1.96 years after bias correction.
AB - Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject’s biological brain age and their chronological age. This is a potential biomarker for neurodegeneration, e.g. as part of Alzheimer’s disease. Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals. Many studies have been proposed for the prediction of chronological age from brain MRI using machine learning and specifically deep learning techniques. Contrary to most studies, which use the whole brain volume, in this study, we develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator. In this way, we can obtain a visualization of the regions that play the most important role for estimating brain age, leading to more anatomically driven and interpretable results, and thus confirming relevant literature which suggests that the ventricles and the hippocampus are the areas that are most informative. In addition, we leverage this knowledge in order to improve the overall performance on the task of age estimation by combining the results of different patches using an ensemble method, such as averaging or linear regression. The network is trained on the UK Biobank dataset and the method achieves state-of-the-art results with a Mean Absolute Error of 2.46 years for purely regional estimates, and 2.13 years for an ensemble of patches before bias correction, while 1.96 years after bias correction.
KW - Brain age estimation
KW - Deep learning
KW - Localization
KW - MR Images
UR - http://www.scopus.com/inward/record.url?scp=85101529420&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-66843-3_10
DO - 10.1007/978-3-030-66843-3_10
M3 - Conference paper
AN - SCOPUS:85101529420
SN - 9783030668426
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 98
EP - 107
BT - Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology - 3rd International Workshop, MLCN 2020, and Second International Workshop, RNO-AI 2020, Held in Conjunction with MICCAI 2020, Proceedings
A2 - Kia, Seyed Mostafa
A2 - Mohy-ud-Din, Hassan
A2 - Abdulkadir, Ahmed
A2 - Bass, Cher
A2 - Habes, Mohamad
A2 - Rondina, Jane Maryam
A2 - Tax, Chantal
A2 - Wang, Hongzhi
A2 - Wolfers, Thomas
A2 - Rathore, Saima
A2 - Ingalhalikar, Madhura
PB - Springer Science and Business Media Deutschland GmbH
T2 - 3rd International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2020, and 2nd International Workshop on Radiogenomics in Neuro-oncology, RNO-AI 2020, held in conjunction with MICCAI 2020
Y2 - 4 October 2020 through 8 October 2020
ER -