King's College London

Research portal

Patch-based image reconstruction for PET using prior-image derived dictionaries

Research output: Contribution to journalArticle

Marzieh Tahaei ; Andrew Jonathan Reader

Original languageEnglish
Pages (from-to)6833–6855
JournalPhysics in Medicine and Biology
Volume61
DOIs
StatePublished - 1 Sep 2016

Documents

King's Authors

Abstract

In PET image reconstruction, regularization is often needed to reduce the noise in the resulting images. Patch-based image processing techniques have recently been successfully used for regularization in medical image reconstruction through a penalized likelihood framework. Re-parameterization within reconstruction is another powerful regularization technique in which the object in the scanner is re-parameterized using coefficients for spatially-extensive basis vectors. In this work, a method for extracting patch-based basis vectors from the subject's MR image is proposed. The coefficients for these basis vectors are then estimated using the conventional MLEM algorithm. Furthermore, using the alternating direction method of multipliers, an algorithm for optimizing the Poisson log-likelihood while imposing sparsity on the parameters is also proposed. This novel method is then utilized to find sparse coefficients for the patch-based basis vectors extracted from the MR image. The results indicate the superiority of the proposed methods to patch-based regularization using the penalized likelihood framework.

Download statistics

No data available

View graph of relations

© 2015 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454