Path optimization for Flying Base Stations in Multi-Cell Networks

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

6 Citations (Scopus)

Abstract

A crucial aspect when deploying Unmanned Aerial Vehicles (UAVs) to operate as flying base stations (FBSs) assisting 5G networks is path (trajectory) optimization. Even though this topic has received significant research attention for multiple UAVs located at the same base station (BS), the area of path optimization in the case of multiple UAVs located in different BSs serving user equipment (UE) or cluster points (CPs) in a multi cell environment received less attention. This paper addresses a mixed integer linear programming (MILP) formulation for FBS path optimization in terms of travel time considering a multi-cell environment which the BSs can act as the depots for multiple UAVs. Numerical investigations reveal that the proposed UAV path optimization approach can decrease the overall travel time for the deployment of the FBSs compared to other solutions that do explicitly optimize the case of multiple BSs and the UEs and/or CPs that belong within the coverage area of different BSs.

Original languageEnglish
Title of host publication2020 IEEE Wireless Communications and Networking Conference, WCNC 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728131061
DOIs
Publication statusPublished - May 2020
Event2020 IEEE Wireless Communications and Networking Conference, WCNC 2020 - Seoul, Korea, Republic of
Duration: 25 May 202028 May 2020

Publication series

NameIEEE Wireless Communications and Networking Conference, WCNC
Volume2020-May
ISSN (Print)1525-3511

Conference

Conference2020 IEEE Wireless Communications and Networking Conference, WCNC 2020
Country/TerritoryKorea, Republic of
CitySeoul
Period25/05/202028/05/2020

Keywords

  • 5G
  • Mixed Integer Linear Programming (MILP)
  • Unmanned Aerial Vehicle (UAV)
  • Wireless Networks.

Fingerprint

Dive into the research topics of 'Path optimization for Flying Base Stations in Multi-Cell Networks'. Together they form a unique fingerprint.

Cite this