Abstract
A dual radioligand binding and electrophysiological study, focusing on a range of ligand-gated ion channels, was performed with a chemically-validated essential oil derived from Melissa officinalis (MO), which has shown clinical benefit in treating agitation. MO inhibited binding of [S-35] t-butylbicyclophosphorothionate (TBPS) to the rat forebrain gamma-aminobutyric acid (GABA)A receptor channel (apparent IC50 0.040 +/- 0.001 mg mL(-1)), but had no effect on N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropianate (AMPA) or nicotinic acetylcholine receptors. Electrophysiological analyses with primary cultures of rat cortical neurons demonstrated that MO reversibly inhibited GABA-induced currents in a concentration-dependent manner (0.01-1 mg mL(-1)), whereas no inhibition of NMDA- or AMPA-induced currents was noted. Interestingly, MO elicited a significant dose-dependent reduction in both inhibitory and excitatory transmission, with a net depressant effect on neurotransmission (in contrast to the classical GABA(A) antagonist picrotoxinin which evoked profound epileptiform burst firing in these cells). The anti-agitation effects in patients and the depressant effects of MO in in-vitro we report in neural membranes are unlikely to reflect a sedative interaction with any of the ionotropic receptors examined here
Original language | English |
---|---|
Pages (from-to) | 377 - 384 |
Number of pages | 8 |
Journal | Journal of Pharmacy and Pharmacology |
Volume | 60 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2008 |