Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI

Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, Julia A. Schnabel

Research output: Working paper/PreprintPreprint

6 Downloads (Pure)

Abstract

We propose PHIMO, a physics-informed learning-based motion correction method tailored to quantitative MRI. PHIMO leverages information from the signal evolution to exclude motion-corrupted k-space lines from a data-consistent reconstruction. We demonstrate the potential of PHIMO for the application of T2* quantification from gradient echo MRI, which is particularly sensitive to motion due to its sensitivity to magnetic field inhomogeneities. A state-of-the-art technique for motion correction requires redundant acquisition of the k-space center, prolonging the acquisition. We show that PHIMO can detect and exclude intra-scan motion events and, thus, correct for severe motion artifacts. PHIMO approaches the performance of the state-of-the-art motion correction method, while substantially reducing the acquisition time by over 40%, facilitating clinical applicability. Our code is available at https://github.com/HannahEichhorn/PHIMO.
Original languageUndefined/Unknown
Publication statusPublished - 13 Mar 2024

Keywords

  • eess.IV

Cite this