TY - JOUR
T1 - Pluripotent Stem Cells in Clinical Setting-New Developments and Overview of Current Status
AU - Ilic, Dusko
AU - Ogilvie, Caroline
N1 - Publisher Copyright:
© The Author(s) 2022. Published by Oxford University Press.
PY - 2022/9/26
Y1 - 2022/9/26
N2 - The number of clinical trials using human pluripotent stem cells (hPSC)-both embryonic and induced pluripotent stem cells (hESC/iPSC)-has expanded in the last several years beyond expectations. By the end of 2021, a total of 90 trials had been registered in 13 countries with more than 3000 participants. However, only US, Japan, China, and the UK are conducting both hESC- and hiPSC-based trials. Together US, Japan, and China have registered 78% (70 out of 90) of all trials worldwide. More than half of all trials (51%) are focused on the treatment of degenerative eye diseases and malignancies, enrolling nearly 2/3 of all participants in hPSC-based trials. Although no serious adverse events resulting in death or morbidity due to hPSC-based cellular therapy received have been reported, information about safety and clinical efficacy are still very limited. With the availability of novel technologies for precise genome editing, a new trend in the development of hPSC-based cellular therapies seems to be emerging. Engineering universal donor hPSC lines has become a holy grail in the field. Indeed, because of its effectiveness and simplicity nanomedicine and in vivo delivery of gene therapy could become more advantageous than cellular therapies for the treatment of multiple diseases. In the future, for the best outcome, hPSC-based cellular therapy might be combined with other technological advancements, such as biomimetic epidural electrical stimulation that can restore trunk and leg motor functions after complete spinal injury.
AB - The number of clinical trials using human pluripotent stem cells (hPSC)-both embryonic and induced pluripotent stem cells (hESC/iPSC)-has expanded in the last several years beyond expectations. By the end of 2021, a total of 90 trials had been registered in 13 countries with more than 3000 participants. However, only US, Japan, China, and the UK are conducting both hESC- and hiPSC-based trials. Together US, Japan, and China have registered 78% (70 out of 90) of all trials worldwide. More than half of all trials (51%) are focused on the treatment of degenerative eye diseases and malignancies, enrolling nearly 2/3 of all participants in hPSC-based trials. Although no serious adverse events resulting in death or morbidity due to hPSC-based cellular therapy received have been reported, information about safety and clinical efficacy are still very limited. With the availability of novel technologies for precise genome editing, a new trend in the development of hPSC-based cellular therapies seems to be emerging. Engineering universal donor hPSC lines has become a holy grail in the field. Indeed, because of its effectiveness and simplicity nanomedicine and in vivo delivery of gene therapy could become more advantageous than cellular therapies for the treatment of multiple diseases. In the future, for the best outcome, hPSC-based cellular therapy might be combined with other technological advancements, such as biomimetic epidural electrical stimulation that can restore trunk and leg motor functions after complete spinal injury.
KW - clinical trials
KW - embryonic stem cells
KW - induced pluripotent stem cells
KW - pluripotent stem cells
UR - http://www.scopus.com/inward/record.url?scp=85138658360&partnerID=8YFLogxK
U2 - 10.1093/stmcls/sxac040
DO - 10.1093/stmcls/sxac040
M3 - Article
C2 - 35671338
AN - SCOPUS:85138658360
SN - 1066-5099
VL - 40
SP - 791
EP - 801
JO - Stem cells (Dayton, Ohio)
JF - Stem cells (Dayton, Ohio)
IS - 9
ER -