Positive Feedback Defines the Timing, Magnitude, and Robustness of Angiogenesis

Donna J. Page, Raphael Thuret, Lakshmi Venkatraman, Tokiharu Takahashi, Katie Bentley*, Shane P. Herbert

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)
137 Downloads (Pure)

Abstract

Angiogenesis is driven by the coordinated collective branching of specialized leading “tip” and trailing “stalk” endothelial cells (ECs). While Notch-regulated negative feedback suppresses excessive tip selection, roles for positive feedback in EC identity decisions remain unexplored. Here, by integrating computational modeling with in vivo experimentation, we reveal that positive feedback critically modulates the magnitude, timing, and robustness of angiogenic responses. In silico modeling predicts that positive-feedback-mediated amplification of VEGF signaling generates an ultrasensitive bistable switch that underpins quick and robust tip-stalk decisions. In agreement, we define a positive-feedback loop exhibiting these properties in vivo, whereby Vegf-induced expression of the atypical tetraspanin, tm4sf18, amplifies Vegf signaling to dictate the speed and robustness of EC selection for angiogenesis. Consequently, tm4sf18 mutant zebrafish select fewer motile ECs and exhibit stunted hypocellular vessels with unstable tip identity that is severely perturbed by even subtle Vegfr attenuation. Hence, positive feedback spatiotemporally shapes the angiogenic switch to ultimately modulate vascular network topology.

Original languageEnglish
Pages (from-to)3139-3151
JournalCell Reports
Volume27
Issue number11
Early online date11 Jun 2019
DOIs
Publication statusPublished - 11 Jun 2019

Keywords

  • angiogenesis
  • endothelial cell
  • lateral inhibition
  • positive feedback
  • tetraspanin
  • tip cell

Fingerprint

Dive into the research topics of 'Positive Feedback Defines the Timing, Magnitude, and Robustness of Angiogenesis'. Together they form a unique fingerprint.

Cite this